TRS-80® Computer Graphics Operation Manual: Copyright 1983, All Rights Reserved, Tandy Corporation.

Reproduction or use without express written permission from Tandy Corporation, of any portion of this manual is
prohibited. While reasonable efforts have been taken in the preparation of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors or omissions in this manual, or from the use of the
information obtained herein.

TRSDOS 6 Copyright 1983 Logical Systems, Inc. All Rights Reserved, Licensed to Tandy Corporation.

BASIC Software Copyright 1983, Microsoft, Inc., All Rights Reserved, Licensed to Tandy Corporation.

BASICG Software Copyright 1983, Microsoft, Inc., All Rights Reserved, Licensed to Tandy Corporation.

Contents

To Our CuStomersoviiiitiitienenenesseesnensssssessnsssasossnsasassssnsnss 4
1/ Computer Graphics OVerviewcooueeiiienrtnernsressssseesssoassssassnnns 7
2/ Graphics BASIC (BASICG)ittiittiieenssensetosssnsssosossssasssssssnsss 11

BASICG Commandscoititiiiieieienennenensecssassnensacsnanans 11

Starting-UP .. iiiiiiiiiiiii ittt iitiienentotetessosasasessssasssesssanans 12
3/ Graphics UtIlities .« . ..o vvvettnittiinneriinneeroonsseeonsesasssesssnsassnans 45
4/ Graphics Subroutine Library (FORTRAN). .. .ciittttiitrenieneenneeronnasennns 69
5/ Programming the Graphics Boardiiiiiiiiiiiiiiiiineenenennnnnns 85
Appendix A/ BASICG/Utilities Reference Summaryc.cceiveuerennennnnnens 87
Appendix B/ BASICG Error Codes and Messagesc..... eeteterieearaeaas 89
Appendix C/ Subroutine Language Reference Summary...............cociivienennn. 95
Appendix D/ Sample Programsciiiiiiiiiitinittntrtnetoteanessncsanns 97

BASICG ittt ittt ittttaetesasesessosasessnsasnsnsasannns 97

Printing Graphics Displayscciiiiiiiiiiiiiiiiiiiiienenenennsnannns 103

FORTRAN Sample Programs..........c.citiiiuiiiiirerieenssssssscnsnsnses 104
Appendix E/ Base Conversion Chart............cciiiiiiiiiiiiiiiirneronenennnnnns 119
Appendix F/ Pixel Grid Referencecoiiiiiiiiiiiiiinieinnnneennasennns 123
Appendix G/ Line Style Reference..........coviiiiiiiiiitinnniienerernnonsasenans 129
Index ...ttt iitittttttittttttatttttttttttttteaosttottanenoans 131

Model 4 Computer Graphics

To Our Customers . . .

The TRS-80® Computer Graphics package revolutionizes your Model 4 by letting you draw intricate displays from
simple program instructions. With the highly defined Graphics Screen, the list of practical applications is nearly
endless!

The TRS-80 Computer Graphics package includes a:

® Computer Graphics Diskette
® Computer Graphics Operation Manual

However, before you can use this package, your Model 4 must have 64K of RAM (Random Access Memory) and
one disk drive. Your computer must also be modified by a qualified Radio Shack service technician.

Included on the Graphics diskette are:

® TRSDOS Version 6

® Graphics BASIC (BASICG)

® Graphics Subroutine Library (GRPLIB)

® Graphics Utilities

® Sample Programs in BASICG and FORTRAN

To print graphic displays, you can use any Radio Shack printer that has graphic capabilities such as Line Printer VII
(26-1167), Line Printer VIII (26-1168), DMP-100 (26-1253), DMP-200 (26-1254), DMP-400 (26-1251), or
DMP-500 (26-1252).

You can also utilize the Graphics Subroutine Library with several languages, including, but not limited to,
FORTRAN (26-2219).

About This Manual . . .

For your convenience, we’ve divided this manual into five sections plus appendices:

® Computer Graphics Overview

® Graphics BASIC (BASICG) Language Description
® Graphics Utilities

® FORTRAN Description

® Programming the Graphics Board

® Appendices

This package contains two separate (but similar) methods for Graphics programming:

® Graphics BASIC (BASICG)
® Graphics Subroutine Library

If you’re familiar with Model 4 TRSDOS™ and BASIC, you should have little trouble in adapting to Graphics
BASIC. If you want to review BASIC statements and syntax, see your Model 4 Disk System Owner’s Manual.
Then read Chapters 1, 2 and 3, along with Appendixes A, B, D, and E of this manual.

If it’s Graphics applications in FORTRAN you're after, refer to the TRS-80 FORTRAN manual. Then read Chapters
1, 2, 3, and 4 as well as Appendixes C, D, E, and F of this manual.

Note: This manual is written as a reference manual for the TRS-80 Computer Graphics package. It is not intended
as a teaching guide for graphics programming.

Notational Conventions

The following conventions are used to show syntax in this manual:

CAPITALS Any words or characters which are uppercase must be typed in exactly as they
appear.

lowercase italics Fields shown in lowercase italics are variable information that you must substitute
a value for.

ENTER Any word or character contained within a box represents a keyboard key to be
pressed.

Ellipses indicate that a field entry may be repeated.

filespec A field shown as filespec indicates a standard TRSDOS file specification of the
form: filenamelext.password:d

punctuation Punctuation other than ellipses must be entered as shown.

delimiters Commands must be separated from their operands by one or more blank spaces.

Multiple operands, where allowed, may be separated from each other by a
comma, a comma followed by one or more blanks, or by one or more blanks.
Blanks and commas may not appear within an operand.

Computer Graphics Overview

1/ Computer Graphics Overview

Graphics is the presentation of dimensional artwork. With TRS-80 Computer Graphics, the artwork is displayed on a
two-dimensional plane — your computer screen. Like an artist’s easel or a teacher’s blackboard, the screen is a
‘‘drawing board’’ for your displays.

TRS-80 Computer Graphics has two colors:

e Black (OFF)
® White (ON)

Graphics programming is different from other types of programming because your ultimate result is a pictorial
display (bar graph, pie chart, etc.) rather than textual display (sum, equation, etc.). This is an important distinction.
After working with graphics for a while, you’ll find yourself thinking ‘‘visually’’ as you write programs.

In computer-generated graphics, displays can include tables, charts, graphs, illustrations and other types of artwork.
Once they’re created, you can ‘‘paint’’ displays with a variety of styles and shapes, or even simulate animation.

The Computer Graphics program uses a ‘‘high-resolution’’ screen. The more addressable points or dots (called
‘“‘pixels’’) on a computer’s screen, the higher the resolution. A lower resolution screen has fewer addressable pixels.

PIXEL—’L;_-H

PIXEL smm—

Lower resolution Higher resolution

Figure 1. Resolution

Since the TRS-80 has high-resolution — 640 pixels on the X-axis (0 to 639) and 240 pixels on the Y-axis (0 to 239)
— you can draw displays that have excellent clarity and detail.

How TRS-80 Computer Graphics Works

The concept of graphics is fairly simple. Each point on the screen can be turned ON (white) or OFF (black).
When you clear the Graphics Screen, all graphic points are turned OFF.

Therefore, by setting various combinations of the pixels (usually with a single command) either ON or OFF, you can
zenerate lines, circles, geometric figures, pictures, etc.

Model 4 Computer Graphics

The Graphics Screen

TRS-80 Computer Graphics has two ‘‘screens’” — Text and Graphics. (We’ll call them screens, although they are
really modes.) Both screens can act independently of each other and make use of the computer’s entire display area.

The Text Screen, also referred to as the ‘‘Video Display,’’ is the ‘‘normal’’ screen where you type in your
programs. The Graphics Screen is where graphic results are displayed. Both screens can be cleared independently.
Note: The Graphics Screen will not automatically be cleared when you return to TRSDOS. It will be cleared when
you re-enter BASICG.

The Graphics Screen cannot be displayed at the same time as the Text Screen.

While working with Computer Graphics, it might be helpful to imagine the screen as a large Cartesian coordinate
plane (with a horizontal X- and a vertical Y-axis). However, unlike some coordinate systems, TRS-80 Computer
Graphics’ coordinate numbering starts in the upper-left corner — (0,0) — and increases toward the lower-right
corner — (639,239). The lower-left corner is (0,239) and the upper-right corner is (639,0).

Since the screen is divided into X-Y coordinates (like the Cartesian system), each pixel is defined as a unique
position. In TRS-80 Computer Graphics, you can directly reference these coordinates as you draw.

About Ranges...

Some TRS-80 Computer Graphics commands accept values within the Model 4 integer range (— 32768 to 32767),
instead of just O to 639 for X and O to 239 for Y. Since most of the points in the integer range are off the screen,
these points are part of what is called Graphics ‘‘imaginary’’ Cartesian system.

(0,0) (639,0)

@239) (639,239) /

Figure 2. Graphics Visible Screen

Computer Graphics Overview

y (0, —32768)
(=) (+,-)
x (—32768,0) (0,0) (+32767,0)
(=, +) (+,+)
(0, 32767)

Figure 3. Graphics “Imaginary” Cartesian System

Graphics BASIC (BASICG)

2/ Graphics BASIC
Graphics BASIC (BASICG) vs. BASIC

The Graphics BASIC file on the supplied diskette is named BASICG.

You can load and run a BASIC file from either BASICG or BASIC. You cannot run programs that contain BASICG
statements while in BASIC.

[mportant Note: Because of memory limitations, some programs (i.e., some application programs) will not run in
BASICG. BASICG uses approximately 6.6K more memory than BASIC. Some Graphics Commands use Free
Memory. This means that the larger your BASIC programs are, the more limitations on your Graphics capabilities.

Each Graphics program statement has a specific syntax and incorporates a Graphics BASIC command or function.

Table 1 gives a brief description of the BASICG commands; Table 2 lists the BASICG functions. This section of the
manual will describe each statement and function in detail.

BASICG Commands

Command Description

CIRCLE Draws a circle, arc, semicircle, etc.

sene & -

GLOCATE Sets the Graphics Cursor and the direction for putting characters on the Graphics
Screen.

LINE Draws a line from the startpoint to the endpoint in the specified line style and color.
Also creates a box.

e

PRESET Sets an individual dot (pixel) OFF (or ON).

Table 1

11

Model 4 Computer Graphics

BASICG Functions

Function Description

&POINT Returns the OFF/ON color value of a pixel.

Table 2

Starting-Up

Before using the diskette included with this package, be sure to make a ‘‘safe copy’’ of it. See your Model 4
Introduction to Your Disk System for information on BACKUP.

To load BASICG:
1. Power up your System according to the start-up procedure in your Model 4 Introduction to Your Disk System.
2. Insert the backup diskette into Drive 0.
3. Initialize the System as described in your Model 4 Introduction to Your Disk System.
4. When TRSDOS Ready appears, type:
BASICG

The Graphics BASIC start-up prompts, followed by the READY prompt appear, and you are in Graphics BASIC.
You can now begin BASICG programming.

Remember that Model 4 numeric values are as follows:

Model 4 Numeric Values

Numeric Type Range Storage Requirement Example

Integer — 32768, 32767 2 bytes 240, 639, —10

Double-Precision —1x10 8 8 bytes 1230000.00

,— 110
+1%10%8, + 1410 38 3.1415926535897932
Up to 17 significant digits
(Prints 16)
Table 3

12

Graphics BASIC (BASICG)

With each BASICG command or function, there are various options which you may or may not include in a program
statement (depending on your needs). Each option is separated from the previous option by a delimiter, usually a
comma. When you do not specify an available option (e.g., you use the default value) and you specify subsequent
options, you must still enter the delimiter or a Syntax Error will result. (See your Model 4 Disk System Owner’s
Manual for more information.)

Because you are dealing with two distinct screens, the Graphics Screen and the Text Screen, we strongly urge you to
read the description of the SCREEN command before continuing.

CIRCLE
Draws Circle, Semicircle, Ellipse, Arc, Point

The CIRCLE command lets you draw five types of figures:

-

Circle Ellipse Arc Pie-Slice Point

Figure 4. Types of Displays with CIRCLE
With CIRCLE, you can enter values for PI (and 2 x PI) up to 37 significant digits without getting an overflow error.
However, only 16 digits are displayed.

3.1415926535897932384626433832795028841
6.2831853071795864769252867665590057682

13

Model 4 Computer Graphics

However, you’ll probably only be able to visually detect a change in the circle’s start and end when PI is accurate to
a few significant digits (e.g., 3.1, 6.28, etc.). The start and end values can’t be more than 2 x PI (e.g., 6.2832 will
not work) or an Illegal Function Call error will occur.

(x,y)
Centerpoint

The (x,y) coordinates in the CIRCLE statement specify the centerpoint of the figure. x and y are numeric expressions
in the integer number range.

Example
CIRCLE (x,y),r
CIRCLE (320,120),r
Center
Figure 5. Center of Circle
r
Radius

The radius of a circle is measured in pixels and is a numeric expression in the integer range. Radius is the distance
from the centerpoint to the edge of the figure. Although a negative value will be accepted by BASICG, the results of
using a negative value are unpredictable.

The radius is either on the X-axis or Y-axis, depending on the aspect ratio (see ar). If the aspect ratio is greater than
1, the radius is measured on the Y-axis. If the aspect ratio is less than or equal to 1, the radius is measured on the
X-axis.
Example
10 CIRCLE(320,120) ,100
This example draws a circle. The radius is 100 and the centerpoint is (320,120).
c
Color

You can get the ON/OFF (white/black) color of a figure’s border and radius lines (see chart/end) by specifying a
numeric value of 1 or 0.

If you omit color, BASICG uses 1 (ON/white).

14

Graphics BASIC (BASICG)

Border

Figure 6. Border of Circle
start/end
Startpoint/Endpoint of Circle
The range for start and end is 0 to 6.283185 (2 x PI).
If you do not enter start and end, the default values of 0 and 6.28, respectively, are used.

A negative start or end value will cause the respective radius to be drawn in addition to the arc (i.e., it will draw a
““piece of the pie’’). The actual start and endpoints are determined by taking the absolute value of the specified start
and endpoints. These values are measured in radians.

Note: Radius will not be drawn if szart or end is —0. To draw a radius with szart or end as 0, you must use
—0.000...01.

12:00

9:00 = 3:00

6:00

Figure 7. Clock/Radian Equivalents

Model 4 Computer Graphics

Degrees Radians Clock Equivalent
0 0 3:00
90 1.57 12:00
180 3.14 9.00
270 4.71 6:00
360 6.28 3:00

Table 4. Degree/Radians/Clock Equivalents

You can draw semicircles and arcs by varying start and end. If start and end are the same, a point (one pixel) will
be displayed instead of a circle.

end

Radius

start

Center

Figure 8. CIRCLE’s (—) start, (—) end

You can have a positive start and a negative end (or vice versa) as well as negative starts and ends. In these cases,
only one radius line is drawn.

end

Center)
Radius

Figure 9. CIRCLE’s (+) start, (—) end

Graphics BASIC (BASICG)

Hints and Tips about start and end:

® When using the default values for srart and end, you must use commas as delimiters if you wish to add more
parameters.
® If you use PI, it is not a reserved word in BASICG and must be defined in your program.

ar
Aspect Ratio
You can draw ellipses by varying the aspect ratio from the default value (.5) for a circle (and semicircle).

Every ellipse has a ‘‘major axis’’ which is the ellipse’s longer, predominant axis. With an ellipse (as with a circle),
the two axes are at right angles to each other.

The mathematical equation for determining the aspect ratio is:
ar = length of Y-axis/length of X-axis

® If the aspect ratio is .5, a circle is drawn.
@ If the ratio is less than .5, an ellipse with a major axis on the X-axis is drawn.
® If the ratio is greater than .5, an ellipse with a major axis on the Y-axis is drawn.

y
y
A
X - /——_\\ > X - —
&___/
v
X-Axis Ellipse (ar < .5) Y-Axis Ellipse (ar > .5)

Figure 10. CIRCLE’s Ellipse

The range for aspect ratio is a single-precision floating-point number greater than 0.0 (to 1x10%®). Although a
negative value will be accepted by BASICG, the results of using a negative value are unpredictable.

Hints and Tips about aspect ratio:

® Entering .5 as the ratio produces a circle.

® Numbers between O and .5 produce an ellipse with a major axis on X.

® Numbers over .5 generate an ellipse with a major axis on Y. .
® Even though you can enter large aspect ratios, large numbers may produce straight lines.

17

Model 4 Computer Graphics

Examples

CIRCLE (3204+120) 9041
This example draws a white-bordered circle with the centerpoint of (320,120) and radius of 90.

CIRCLE (320120)390 114447
This statement draws a white-bordered ellipse with an origin of (320,120) and radius of 90. The major axis is the
Y-axis.

CIRCLE (3Z20+120),:904+1+-6.2+-5
This statement draws an arc with a vertex (‘‘origin’”) of (320,120) and radius of 90. szart is 6.2 and end is 5. Radius
lines are drawn for start and end.

CIRCLE (3204+120)+90+1 -4
This example draws an arc with a vertex of (320,120) and radius of 90. szart is 0 and end is 4. A radius line is
drawn for end.

1¢ PI=3.,1415926
20 CIRCLE (320:120) 100,31 P11 +2%PI1 .5
A semicircle is drawn.

10 CIRCLE (150,10@) +1004+1,+-5,-1

20 CIRCLE (220,100) +100 41541
Two arcs are drawn with the same start and end point. The arc with the negative start and end has two radius lines
drawn to the vertex. The arc with a positive start and end has no radius lines.

CIRCLE (3204+120) +1404+,-44+6.1
This statement draws an arc with a vertex at (320,120) and a radius of 140. Start is 4 and end is 6.1. A radius line
is drawn for start.

CIRCLE (3204+120) 14014031 4+.5
This example draws an arc with a vertex of (320,120) and radius of 140.

Sample Program

4 SCREEN @

5 CLR

10 FOR X =10 TO 209 STEP 10
20 CIRCLE (300,100) sX+14+4+4+.8
30 NEXT X

490 FOR ¥=10 TO 200 STEP 10
50 CIRCLE (300:100) ¥ s1sss.41
6@ NEXT Y

7¢ FOR Z=10 TO 200 STEP 10
80 CIRCLE (300,:10@)+Z+14+44.5
90 NEXT Z

10 GOTO 5

18

Graphics BASIC (BASICG)

A set of 20 concentric ellipses is drawn with a major axis on Y, a set of 20 concentric ellipses is drawn with a major
axis on X, and a set of 20 concentric circles is drawn. The ellipses and circles in each of the three groups are
concentric and the radius varies from 10 to 200.

CLR
Clears the Graphics Screen

CLR cleérs the Graphics Séreen.

Example

10 SCREEN @
20 CIRCLE(320,120),100,1

This program line will draw a circle. Now type:
CLRr (ENTER
“and the Graphics Screen will be cleared but the Text Screen will remain unchanged. This can be seen by typing:

SCREEN 1

GET
Reads the Contents of Rectangular Pixel Area into Array

Important Note: BASICG recognizes two syntaxes of the command GET — the syntax described in this manual and
the syntax described in the Model 4 Disk System Owner’s Manual. BASIC recognizes only the GET syntax
described in the Model 4 Disk System Owner’s Manual.

GET reads the graphic contents of a rectangular pixel area into a storage array for future use by PUT (see PUT).

A rectangular pixel area is a group of pixels which are defined by the diagonal line coordinates in the GET
statement.

The first two bytes of array name are set to the horizontal (X-axis) number of pixels in the pixel area; the second
two bytes are set to the vertical (Y-axis) number of pixels in the pixel area. The remainder of array name represents
the status of each pixel, either ON or OFF, in the pixel area. The data is stored in a row-by-row format. The data is
stored 8 pixels per byte and each row starts on a byte boundary.

19

Model 4 Computer Graphics

Array Limits

When the array is created, BASICG reserves space in memory for each element of the array. The size of the array is
limited by the amount of memory available for use by your program — each real number in your storage array uses
four memory locations (bytes).

The array must be large enough to hold your graphic display and the rectangular area must include all the points you
want to store.

Your GET rectangular pixel area can include the entire screen (i.e., GET(0,0) —(639,239),array name), if the array
is dimensioned large enough.

To determine the minimum array size:
1. Divide the number of X-axis pixels by 8 and round up to the next higher integer.

2. Multiply the result by the number of Y-axis pixels. When counting the X-Y axis pixels, be sure to include the
first and last pixel.

3. Add four to the total.
4. Divide by four (for real numbers) or two (for integers) rounding up to the next higher integer.
The size of the rectangular pixel area is determined by the (x,y) coordinates used in GET:

Position: upper-left corner = startpoint = (x1,y1)
lower-left corner = endpoint = (x2,y2)

Size (in pixels): width = x2—x1+1
length = y2—yl+1
Example
GET(1@,10)-(B0+50) sV
This block is 71 pixels wide on the X-axis (10 through 80) and 41 long on the Y-axis (10 through 50).

® For real: 71/8 = 9 %41 = 369 + 4 = 373/4 = 94
® For integer: 71/8 = 9 * 41 369 + 4 = 373/2 = 187

Depending on the type of array you use, you could set up your minimum-size dimension statement this way:

® Real DIM V(93)
or

® Integer DIM V%4 (186)
Examples

10 DIM V(Z249)
20 CIRCLE (B3+43) 4201
30 GET (10,10)-(120,80) Y

An array is created, a circle is drawn and stored in the array via the GET statement’s rectangular pixel area’s
parameters (i.e., (10,10)—(120,80)).

20

Graphics BASIC (BASICG)

Calculate the dimensions of the array this way:
Rectangular pixel area is 111 X 71. That equals:

111/8 = 14 =71 = 994 + 4 = 998/4 = 250

(10,10) (120,10)

Rectangular
Pixel
Area

(10,80) (120,80)

Figure 11

10 DIM V(30.:30)
20 CIRCLE (5@,50) 10
30 GET (10,10)-(80,80) »V

A two-dimensional array is created, a circle is drawn and stored in the array via the GET statement’s rectangular
pixel area’s parameters (i.e., (10,10) —(80,80)).

(10,10)

Rectangular

Pixel I
Area

(80,80)

Figure 12

1¢ DIM V4L(564)
20 CIRCLE (B5:45)4504+141,3
30 GET(10:10)-(1204+80) V%

A one-dimensional integer array is created, an arc is drawn and stored in the array via the GET statement’s
rectangular area’s parameters.

21

Model 4 Computer Graphics

GLOCATE
Sets the Graphics Cursor

Since the Text Screen and the Graphics Screen cannot be displayed at the same time, you need an easy way to
display textual data on the Graphics Screen. GLOCATE provides part of this function by allowing you to specify
where on the Graphics Screen to start displaying the data, (x,y), and which direction to display it — direction.

The allowable values for direction are:

0 — zero degree angle
1 — 90 degree angle

2 — 180 degree angle
3 — 270 degree angle

Examples

1@ GLOCATE (3Z204+120) 0@
This program line will cause characters to be displayed starting in the center of the screen in normal left-to-right
orientation.

100 GLOCATE (320:10) s1
This program line will cause characters to be displayed starting in the center of the top portion of the screen in a
vertical orientation, going from the top of the screen to the bottom of the screen.

200 GLOCATE (B30:120) .2
This program line will cause characters to be displayed upside down starting at the right of the screen and going
towards the left.

300 GLOCATE (3Z0,23@) .3
This program line will cause the characters to be displayed vertically, starting at the center of the lower portion of
the screen towards the top of the screen.

22

Graphics BASIC (BASICG)

LINE
Draws a Line or Box

LINE draws a line from the starting point (x/,y/) to the ending point (x2,y2).

If the starting point is omitted, either (0,0) is used if a previous end coordinate has not been specified or the last
ending point of the previous command is used. If one or both parameters are off the screen, only the part of the line
which is visible is displayed.

With over 65,500 line styles possible, each style is slightly different. You’ll find it’s almost impossible to detect
some of the differences since they are so minute.

LINE with Box Option

The start and end coordinates are the diagonal coordinates of the box (either a square or rectangle). When you don’t
specify the B or BF options, the ‘‘diagonal’’ line is drawn. When you specify the B option, the perimeter is drawn
but not the diagonal line. When you specify the BF option, the perimeter is drawn, and the area bounded by the
perimeter is shaded in the specified color (c).

LINE(140,:80)-(500,200) +14B

(140,80)

(500,200)

Figure 13

23

Model 4 Computer Graphics

style
style sets the pixel arrangement in 16-bit groups.
For example, 0000 1111 0000 1111 (binary), OFOF (hex), or 3855 (decimal).

style can be any number in the integer range (negative or positive). Using hexadecimal numbers, you can figure the
exact line style you want. There will always be four numbers in the hexadecimal constant.

To use hexadecimal numbers for style:
1. Decide what pixels you want OFF (bit=0) and ON (bit=1).

2. Choose the respective hexadecimal numbers (from the Base Conversion Chart, Appendix D).

Example
0000 1111 0000 1111 = &HOFOF

Creates a dashed line.

Type Binary Numbers Hex Numbers

Long dash 0000 0000 1111 1111 &HOOFF

“Short-short” dash 1100 1100 1100 1100 &HCCCC

OFF/ON 0101 0101 0101 0101 &H5555

Medium dots 1000 1000 1000 1000 &H8888

Table 5. Sample Line Styles

Examples

LINE -(100,40)
This example draws a line in white (ON) starting at the last endpoint used and ending at (100,40).

LINE (@2:0)-(319,199)
This statement draws a white line starting at (0,0) and ending at (319,199).

LINE(LIQD,100)-(2004+200) 11,4453
This example draws a line from (100,100) to (200,200) using line style 45 (&H002D).

24

Graphics BASIC (BASICG)

LINE (100,100)-(300:200) 1+ HOPOFF
This LINE statement draws a line with ‘‘long dashes.”’ Each dash is eight pixels long and there are eight blank
pixels between each dash.

LINE (100,100)-(300200) +1,+-1000
This statement draws a line from (100,100) to (300,200) using line style — 1000.

LINE (200,200)-(-100,100)
A line is drawn from the startpoint of (200,200) to (— 100,100).

1@ LINE (30:30)-(1804+120)
20 LINE -(120.:180)
32 LINE -(30.,33)

This program draws a triangle.

10 LINE -(30,30)
20 LINE -(120.:80)
30 LINE -(-100.,-100)
4¢ LINE -(3000,1000)

This program draws four line segments using each endpoint as the startpoint for the next segment.

PAINT
Paints Screen

PAINT shades the Graphics Screen with riling starting at the specified X-Y coordinates, proceeding upward and
downward.

25

Model 4 Computer Graphics

X,y
Paint Startpoint

x,y is the coordinate where painting is to begin and must:

® Be inside the area to be painted.
® Be on the working area of the screen.

For example:

10 CIRCLE(3Z@,120) ,80
20 PAINT(3204+120) +1 41

A circle with a centerpoint of (320,120) is drawn and painted in white.
tiling
Paint Style

tiling is the pattern in a graphics display. By specifying each pixel, you can produce a multitude of tiling styles
thereby simulating different shades of paint on the screen.

tiling is convenient to use in bar graphs, pie charts, etc., or whenever you want to shade with a defined pattern.
There are two types of tiling:

® Numeric expressions
® Strings

Numeric Expressions. There are only two numeric expressions that can be used for the paint style — 0 and 1. 1
paints all pixels ON (solid white) and O paints all pixels OFF (solid black).

To use numeric expressions, enter either a O or 1. For example:
PAINT (320:120) 4141

Strings (Point-by-Point Painting). You can paint precise patterns using strings by defining a multi-pixel grid,
pixel-by-pixel, on your screen as one contiguous pattern.

String painting is called ‘‘pixel’’ painting because you are literally painting the screen *‘pixel-by-pixel’’ in a
predetermined order.

You can define the tile length as being one to 64 vertical tiles, depending on how long you want your pattern. Tile
width, however, is always eight horizontal pixels (8 pixels representing one 8-bit byte). The dimensions of a tile
pattern are length by width. Tile patterns are repeated as necessary to paint to the specified borders. Because of its
symmetry, you’ll probably find equilateral pixel grids most convenient.

26

Graphics BASIC (BASICG)

Figure 14. Example of an 8-by-8 Pixel Grid

Strings allow numerous graphic variations because of the many pixel combinations you can define.

Important Note: You cannot use more than two consecutive rows of tiles which match the background or an Illegal
Function Call error will occur. For example:

PAINT (1,1) CHR$(BHFF)+CHR$(&HFF)+CHR% (&H@®)+CHR$ (&:HQ D)
+CHR® (&HO@)+CHR$ (&HPD) »1 yCHR$ (RHO D)

returns an Illegal Function Call error.

Using Tiling

You may want to use a sheet of graph paper to draw a style pattern. This way, you’ll be able to visualize the pattern
and calculate the binary and hexadecimal numbers needed.

Note: Tiling should only be done on either a totally black or white background; otherwise, results are unpredictable.
To draw an example of a tile on paper:

1. Take a sheet of paper and draw a grid according to the size you want (8 X 8, 24 X 8, etc.). Each boxed area on
this grid, hypothetically, represents one pixel on your screen.

2. Decide what type of pattern you want (zigzag, diagonal lines, perpendicular lines, etc.).

3. Fill in each grid in each 8-pixel-wide row of the tile if you want that pixel to be ON, according to your pattern.
If you want the pixel to be OFF, leave the grid representing the pixel blank.

4. On your paper grid, count each ON pixel as 1 and each OFF pixel as 0. List the binary numbers for each row to
the side of the grid. For example, you might have 0001 1000 on the first row, 0111 0011 on the second row, etc.

5. Using a hexadecimal conversion chart, convert the binary numbers to hexadecimal numbers. (Each row equates to
a two-digit hexadecimal number.)

6. Insert the hexadecimal numbers in a tile string and enter the string in your program.

Note: For a listing of commonly used tiling styles, see Appendix E.

27

Model 4 Computer Graphics

Example

For example, if you’re working on an 8 x 8 grid and want to draw a plus (** + ") sign:

Binary Hex
8 8 g i1 1184188 goglL 1998 18
8 g g11 1181908 gog1 1999 18
g g g1 118198} 8 gog1 19989 18
1 1 1 1 1 1 1 1 1111 1111 FF
1 1 1 1 1 1 1 1 1111 1111 FF
g 8 g 11 118198 gggL 19989 18
g g g 11 1 {8198} 49 gggL 1999 18
g g g 11 1819019 p981 1990 18
Figure 15. 8 x 8 Grid
Tile string:

A$=CHR$ (&H18)+CHR$ (&H18)+CHR$ (&H18)+CHR$ (&HFF)+CHR$ (&HFF)
+CHR$ (&H1B)+CHR$ (&H1B)+CHR$ (&H18)

b
Border

Border is the OFF/ON color of the border of a graphics design where painting is to stop and is a numeric expression
of either O or 1. If omitted, 1 (ON) is used and all the pixels on the border are set (solid white).

background
Background Area
Background is a 1-byte character which describes the background of the area you are painting. CHR$(&HO00)

specifies a black background and CHR$(&HFF) is a totally white background. If background is not specified,
BASICG uses CHR$(&HO0).

Painting continues until a border is reached or until PAINT does not alter the state of any pixels in a row. However,
if pixels in a given row are not altered and the tile that was to be painted in that row matches the background tile,
painting will continue on to the next row.

Note: BASICG uses Free Memory for tiling.

28

Graphics BASIC (BASICG)

Examples

1® CIRCLE (300,100) 4,100
20 PAINT (300,100) 141
Paints the circle in solid white.

19 CIRCLE (100.,100) ,300
20 PAINT (100,100) 141
Paints the circle. Only the visible portion of the circle is painted on the screen.

4 CLR

5 A=1

6 SCREEN @

190 CIRCLE (320,120,100

20 CIRCLE (100,100) 50

30 CIRCLE (400,200) 60

40 CIRCLE (50@,70) 50

50 PAINT (320,120) A1

B@ PAINT (100,100) A1

7@ PAINT (400,200)A41

80 PAINT (S500.,70) A1
The tiling style is assigned the value 1 in line 5 (A =1) for all PAINT statements. Four circles are drawn and painted
in solid white.

19 LINE (140,:80)-(52@,200) 1B
20 PAINT (260,120) sCHR$ (BRHEE)+CHR$ (&H77)+CHR&(00) »1
Paints box in specified tiling style using strings.

1@ CIRCLE (300.,100),100

20 PAINT (300,100),"D" 41
This example uses a character constant to paint the circle in vertical blank and white stripes. The character *‘D”’
(0100 0100) sets this vertical pattern: one vertical row of pixels ON, three rows OFF.

19 CIRCLE (3Z2Q,120) 200

20 PAINT (320.,120) ,"332211",1

30 PAINT (100.:70) +"EFEF" »1
This example draws and paints a circle, then paints the area surrounding the circle with a different paint style (line
30). This PAINT statement’s (line 30) startpoint must be outside the border of the circle.

19 PAINT (320,120) CHR$ (&HFF) »1

20 CIRCLE (3204+120),100.,0

30 PAINT (320:120) yCHR$ (@) +CHR$ (&HFF) 1@ sCHRS (BHFFJ
Paints the screen white, draws a circle and paints the circle with a pattern.

1@ PAINT (3Z20,120) CHR$ (&HFF) »1

20 CIRCLE (3Z0,120) 10040

30 PAINT (320,120) CHR$(@)+CHR$ (BHAA) +@ sCHR$ (BHFF)
Paints the screen white, draws a circle and paints the circle with a pattern.

29

Model 4 Computer Graphics

19 CIRCLE(30880,100) 100
20 A%$=CHR$(&HOD)+CHR$ (&H7E)+CHR$ (&H18) +CHR$ (&H1B)+CHR$(&H18)
+CHR$ (BH18)+CHR$ (&H1B) +CHR$ (RHOD)
30 PAINT(30@,100) A% 41
This draws the circle and paints with the letter T within the parameters of the circle.

10 A$=CHR$ (BH41)+CHR$ (RH22)+CHR$ (&H14) +CHR$ (&HOB) +CHR$ (&H14)
+CHR$ (BHZZ) +CHR$ (BHA 1) +CHR$ (BHO @)
20 PAINT (30@.,100) A%, 1
This paints Xs over the entire screen.

1 CLEAR 100
3 CLR
5 SCREEN @
19 TILE$(Q)=CHR$ (RHZ22)+CHR$ (&HQD)
20 TILE$(1)=CHR$ (&HFF)+CHR$ (&HOO)
30 TILE%(2)=CHR$ (&H99)+CHR% (&HEE)
49 TILE$(3)=CHR$ (&H99)
S0 TILE®(4)=CHR$ (&HFF)
6@ TILE$(S)=CHR$(&HF®)+CHR$ (&HF?)+CHR% (&HOF)+CHR$ (&HOF)
7% TILE$(B)=CHR$(&H3C)+CHR%(&H3C)+CHR$ (&HFF)
B0 TILE$(7)=CHR$(&H@3)+CHR$ (&HAC)+CHR$ (&H3D)+CHR% (&HCA)
99 A$=TILES$(D)+TILE$(1)+TILE$(2)+TILES(3)+TILE$(4)
+TILE$(S)+TILE$(B)+TILE$(7)
100 PAINT(300:100) :A%1
This example paints the screen with a tiling pattern made up of eight individually defined tile strings (0-7).

&POINT (function)
Returns Pixel Value

- -

The &POINT command lets you read the OFF/ON value of a pixel from the screen.

Values for &POINT that are off the screen (i.e., PRINT &POINT (800,500)) return a — 1, signifying the pixel is off
the screen.

30

Graphics BASIC (BASICG)

Example

19 PSET(30@,100) 1
20 PRINT BPOINT(300,100)
Reads and prints the value of the pixel at the point’s coordinates (300,100) and displays its value: 1.

PRINT &POINT(3000,1200)
Since the pixel is off the screen, a — 1 is returned.

PRINT &POINT(-3000,1000)
Since the pixel is off the screen, a — 1 is returned.

PSET(Z200,100) +0
PRINT &POINT(200,100)
Reads and prints the value of the pixel at the point’s coordinates (200,100) and displays its value: 0.

19 PSET(300,100) »1
20 IF BPOINT(30@,100)=1 THEN PRINT "GRAPHICS BASIC!"
Sets the point ON. Since the point’s value is 1, line 20 is executed and Graphics BASIC is displayed:

GRAPHICS BASIC!

5 SCREEN @
12 PSET(RND(G4d) »RND(242)) »1
20 IF &POINT(320,120)=1 THEN STOP
30 GOTO 10
Sets points randomly until (320,120) is set.

5 CLR

10 LINE(S0B0)-(120,+100) »1,BF

20 PRINT BPOINT(100.:80)

30 PRINT &POINT(110,80)

49 PRINT &POINT(115,90)

50 PRINT &POINT(S@,40)

6@ PRINT &POINT(13@,120)
The first three pixels are in the filled box, so the value 1 (one) is displayed for each of the statements in lines 20,
30, and 40. The pixels specified in lines 50 and 60 are not in the shaded box and Os are returned.

31

Model 4 Computer Graphics

PRESET
Set Pixel OFF (or ON)

PRESET sets a pixel either OFF (0) or ON (1), depending on switch. If switch is not specified, 0 (OFF) is used.
Values for (x,y) that are larger than the parameters of the screen (i.e., greater than 639 for x and 239 for y) are
accepted, but these points are off the screen and therefore are not PRESET.

Note: The only choice for switch is 0 or 1. If you enter any other number, an Illegal Function Call error will result.
Examples

19 PRESET (5@:50) 41
20 PRESET (50:50) 40
Turns ON the pixel located at the specified coordinates (in line 10) and turns the pixel OFF (in line 20).

5 SCREEN @

1@ PRESET (320,120) 1

20 PRESET (300.:100) 1

39 PRESET (340,140) 1

49 FOR I=1 TO 1@00: NEXT I

5@ PRESET (3Z20,120)

6@ PRESET (300.,100)

7@ PRESET (340.,140)

80 FOR I=1 TO 1000: NEXT I
Sets the three specified pixels ON (through the three PRESET statements), pauses, and then turns the three pixels
OFF.

PRESET(300@ ,1000) »1 _
The values for (x,y) are accepted, but since the coordinates are beyond the parameters of the screen, the point is not

PRESET.

32

Graphics BASIC (BASICG)

PRINT #-3,
Write Text Characters to the Graphics Screen

.

PRINT #-3, is used to write text characters to the Graphics Screen. This is the easiest way to display textual data
on the Graphics Screen. Characters are displayed starting at the current Graphics Cursor and going in the direction
specified by the most recently executed GLOCATE command. If a GLOCATE command was not executed prior to
the PRINT #-3, command, a direction of 0 is assumed.

PRINT#-3, will only print text characters (see Appendixes of the Model 4 Disk System Owner’s Manual). Each
character displayed in the 0 or 2 direction uses an 8 X 8 pixel grid; each character displayed in the 1 or 3 direction
uses a 16 X 8 grid. Executing this command will position the Graphics Cursor to the end of the last character that
was displayed.

Displaying text in direction O engages a wraparound feature. If the end of a line is reached, BASICG will continue
the display on the next line. If the end of the screen is reached, BASICG will continue the display at the beginning
of the screen without scrolling. If there is not enough room to display at least one character at the current Graphics
Cursor, an Illegal Function Call error will result. When displaying text in other directions, an attempt to display text
outside of the currently defined screen will cause an Illegal Function Call error to be given.

PSET
Sets Pixel ON (or OFF)

PSET sets a pixel either OFF (0) or ON (1), depending on switch. If switch is not specified, 1 (ON) is used.

The only choice for switch with PSET is O and 1. If you enter any other number, an Illegal Function Call will occur.

Values for (x,y) that are larger than the parameters of the screen (i.e., greater than 639 for x and 239 for y) are
accepted, but these points are off the screen and therefore are not PSET.

Note: The only distinction between PRESET and PSET in BASICG is the default value for swirch. The default value
for PRESET is 0, while the value for PSET is 1.

33

Model 4 Computer Graphics

Examples

19 A=1
20 PSET (50:50) A
Turns the pixel located at the specified coordinates ON.

1@ PSET (RND(G4@) sRND(Z240)) »1
29 GOTO 1@
Pixels are randomly set to 1 (ON) over the defined area (the entire screen).

PSET (-300,-200) +1
The values for (x,y) are accepted, but since it is beyond the parameters of the screen, the pixel is not set.

1@ PSET (3Z20,120) 1
20 A$=INKEY$: IF A%= "" THEN Z0
30 PSET(3Z20,120) .0
Line 10 sets (“‘turns ON"’) a pixel; line 30 resets (‘‘turns OFF’") the same dot.

PUT
Puts Rectangular Pixel Area from
Array onto Screen

Important Note: BASICG recognizes two syntaxes of the command PUT — the syntax described in this manual and
the syntax described in the Model 4 Disk System Owner’s Manual. BASIC recognizes only the PUT syntax
described in the Model 4 Disk System Owner’s Manual.

34

Graphics BASIC (BASICG)

The PUT function puts a rectangular pixel area stored in an array, and defined by GET, onto the screen. GET and
PUT work jointly. Together, they allow you to “‘get’’ a rectangular pixel area which contains a graphic display,
store it in an array, then ‘‘put’’ the array back on the screen later.

Remember that before you GET or PUT, you have to create an array to store the bit contents of the display
rectangular pixel area. The size of the array must match that of the display rectangular pixel area.

PUT moves your GET rectangular pixel area to the startpoint in your PUT statement and the startpoint is the new
upper-left corner of the rectangular pixel area.

To illustrate:

3 DIM V(3)
10 GET (243)-(74+7) Y
100 PUT 50,:30),VPBET

After GETting, PUT this rectangular pixel area to (50,50). The new coordinates are:

(50,50) (51,50) (52,50) (53,50) (54,50) (55,50)
(50,51) (51,51) (52,51) (53,51) (54,51) (55,51)
(50,52) (51,52) (52,52) (53,52) (54,52) (55,52)
(50,53) (51,53) (52,53) (53,53) (54,53) (55,53)
(50,54) (51,54) (52,54) (53,54) (54,54) (55,54)

The rectangular pixel area ((50,50) —(55,54)) is exactly the same pixel size as (2,3) —(7,7); only the location is
different.

(2,3) (7,3)
— -~ —
-~ ~ _ L. - -
“GET” -~ - - A -~ -
RECTANGULAR ~|— =~
PIXEL =~ T~
AREA -~ - -
Tt~) TS~ (56,50)
= =~ ~ _ (50,50 -~ - '
(2,7) - - 77 T~ - -
o ~ - . - - IIPUTII
T~ =~ RECTANGULAR
S~ ~d_ PIXEL
~ < ~ <~ _AREA
-~ ~ - -~ T, —
(50,54) (55,54)
Figure 16

With PUT, action can be PSET, PRESET, OR, AND, or XOR.

These operators are used in BASICG to test the OFF/ON (or 0/1) conditions of a pixel in the original pixel area and
the destination pixel area.

35

Model 4 Computer Graphics

For example (using PSET), the pixel is set ON only if the bit in the PUT array is set ON. If the bit is OFF, the pixel
is turned OFF (reset).

With PRESET, the pixel is set ON only if the bit in the PUT array is set OFF. If the bit is ON, the pixel is turned
OFF (reset).

Using OR, the pixel is set ON if the bit in the PUT array is ON or the corresponding pixel in the destination area is
ON. In all other cases, the pixel is turned OFF (reset). In other words:

) OFF ON
OFF OFF ON
ON ON ON

With AND, the pixel is set ON, if both the bit in the PUT array and the corresponding pixel in the destination area
are ON. In all other cases, the pixel is turned OFF (reset). In other words:

AND _ OFF ON
OFF OFF OFF
ON OFF ON

Using XOR, the pixel is set ON if either the bit in the PUT array or the corresponding pixel in the destination area
(but not both) is ON. In all other cases, the pixel is turned OFF (reset). In other words:

OFF ON
OFF OFF ON
ON ON OFF

The following BASICG program will graphically illustrate the differences between the various action options. Since
the program will give you a ‘‘hard-copy’’ printout of the action options, you’ll need to connect your TRS-80 to a
graphic printer. See ‘‘Graphics Utilities’” later in this manual for more details on using the Computer Graphics
package with a printer.

36

Graphics BASIC (BASICG)

1¢ DATA "OR"s "AND", "PRESET"s "PSET", "XKOR"
20 CLR : SCREEN @

30 FOR ¥= 10 TO 210 STEP 350

49 FOR X= @ TO 40¢ STEP 200

SO0 LINE (X+4@,Y-3)-(X+100,Y+25) +14B
6@ NEXT X

70 LINE (50,Y)-(90,Y+10) +1,BF

80 FOR X= 200 TO 400 STEP Z09¢

90 LINE (X+4350¥)-(X+70,Y+20) +1BF
12@ NEXT X

119 NEXT Y
120 DIM V(10@)

130 GET (30:10)-(90,30) sV
149 FOR N=1 TO 5
150 R= (N-1)#5+1

16@ READ A%

1685 GLOCATE (13G:sR*19) 0

170 PRINT #-34 A%3

175 GLOCATE (3G0sR*10),0

180 PRINT #-3, "="3

1

19¢ ON N GOTO 200, 210, 220, 230, 240
200 PUT (450,12) V,0R: GOTO 250
219 PUT (450:60) s+ VYV ,AND: GOTO Z50
220 PUT (450,110), V,PRESET: GDTO 25¢
230 PUT (450,160) V,4PEET: GOTO 250

249 PUT (450,210) U XOR
250 NEXT N

260 SYSTEM "GPRINT"

279 SCREEN 1

El or l — r
B Ao l = [|

B pgReseT l — -
e . = (Il
. or I = ..

Figure 17

37

Model 4 Computer Graphics

Hints and Tips about PUT:

® An lllegal Function Call error will result if you attempt to PUT a rectangular pixel area to a section of the screen
which is totally or partially beyond the parameters of the screen. For example:

GET(S5@4+50)-(150,150) »V
PUT(200,200) sV PSET

returns an error because the rectangular pixel area cannot be physically moved to the specified rectangular pixel
area (i.e., (200,200) —(300,300)).

® If you use PUT with a viewport (see VIEW), all coordinates must be within the parameters of the viewport or
you’ll get an Illegal Function Call error.

Examples
PUT with PSET

10 DIM VZ(B63)

15 SCREEN @

17 CLR

20 CIRCLE (30:30) 10

30 GET (104+10)-(40:40) V7%
49 FOR I=1 T0O S50@: NEXT I
50 CLR

6@ PUT (110,110) V% PSET
70 FOR I=1 TO 50@: NEXT I

In this example, the circle is drawn, stored, moved and re-created. First the white-bordered circle appears in the
upper left corner of the screen (position (30,30) — program line 20). After a couple of seconds (because of the delay
loop), it disappears and then reappears on the screen — (110,110) — program line 60.

What specifically happened is:
1. An array was created (line 10).

2. A circle was drawn (line 20).

3. GET — The circle which was within the source rectangular pixel area, as specified in the GET statement’s
parameters is stored in the array (line 30).

4. The screen is cleared (line 50).

5. PUT — The circle from the array was PUT into the destination rectangular pixel area as specified in the PUT
statement (line 60) with the PSET option.

38

Graphics BASIC (BASICG)

5 SCREEN @

6 CLR

10 DIM VZ(700)

20 LINE (20,20)-(20:80)

30 LINE (B80.,0)-(80:80)

49 LINE (30:30)-(30,8@)

S50 LINE (10,3)-(10:80)

6@ GET (2:0)-(100,100) »V%
70 FOR I=1 TO 1000: NEXT I
80 PUT (1B0:,12@) V% PSET
9¢ FOR I=1 TO 100@: NEXT I

Draws four lines. GET stores the lines in the rectangular pixel area. PUT moves the lines to another rectangular
pixel area.

SCREEN
Selects Screen

SCREEN lets you set the proper screen. SCREEN 0 selects the Graphics Screen; SCREEN 1 selects the Text Screen.
Any value other than 0 or 1 with SCREEN gives an error.

SCREEN is convenient to use when you want to display either a Graphics Screen or a Text Screen. For example,
you may have run a program and then added to it. With SCREEN, you can remove the graphics display, add to the
program, and then return to the Graphics Screen.

Whenever BASICG tries to display a character on the Text Screen (like in an INPUT or PRINT statement), the
screen is automatically set to the Text Screen. If the program is still running after executing the statement, BASICG
will revert to the screen that was in effect prior to executing the statement.

Examples

10 SCREEN 1

20 LINE (1504+150)-(2004+200)
The computer executes the short program but the Graphics Screen cannot display the graphics because of the
SCREEN 1 command. To display the line, type: SCREEN 0

39

Model 4 Computer Graphics

19 CLR

20 SCREEN 1

30 LINE(1@,10)-(255,191)

490 LINE(@,191)-(255,0)

S0 A%$=INKEY$: IF A$=""THEN 50

60 SCREEN @

70 A%=INKEY®: IF A%="" THEN 7@

80 GOTO 1@
The computer executes the program (draws two intersecting lines) but the screen cannot display the graphics because
of SCREEN 1. By pressing any key, the graphics are displayed because of SCREEN 0.

5 CLR

10 CIRCLE(Z200,100) +100

20 PAINT (200,100) +"d4" 41
Now run the program and type:

SCREEN @ (ENTER
This command turns the Graphics Screen ON. By entering the SCREEN 1 and SCREEN 0 commands, you can
alternately turn the Graphics Screen OFF and ON without losing the executed program display.

VIEW (Command)
Redefines the Screen (Creates a Viewport)

VIEW creates a ‘‘viewport’” which redefines the screen parameters (0-639 for X and 0-239 for Y). This defined area
then becomes the only place you can draw graphics displays.

If you enter more than one viewport, you can only draw displays in the last defined viewport.
Since VIEW redefines the SCREEN:

® CLR clears the interior of the viewport only.

® If you PSET or PRESET points, draw circles, etc., beyond the parameters of the currently defined viewport, only
the portions that are in the viewport will be displayed.

® If you try to read a point beyond the viewport (with POINT), it will return a — 1.

® You can only GET and PUT arrays within the viewport.

® You can’t PAINT outside the viewport.

40

Graphics BASIC (BASICG)

The upper-left corner of the viewport is read as (0,0) (the ‘‘relative origin’’) when creating items inside the viewport.
All the other coordinates are read relative to this origin. However, the ‘‘absolute coordinates’’ of the viewport, as
they are actually defined on the Graphics Cartesian system, are retained in memory and can be read using VIEW as
a function.

Every viewport has absolute and relative coordinates and graphic displays are drawn inside using the relative
coordinates. For example:

10 VIEW (100,100)-(200,200) 01
20 LINE (30:15)-(80,:60) +1

(100,100) A.C. (200,100) A.C.
(0,0) R.C. (30,15) (100,0) R.C.
R.C.
R.C.
(100,200) A.C. (80,60) (200,200) A.C.
(0,100) R.C. (100,100) R.C.
Figure 18

Note: After each of the following examples, you’ll have to redefine the entire screen to VIEW (0,0) —(639,239)
before performing any other Graphics functions.

Examples

UIEW (100,100)-(200,200) 401
Draws a black viewport (pixels OFF) that is outlined in white (border pixels ON).

UIEW (100,100)-(200,200) +1 41
Draws a white viewport (pixels ON) that is outlined in white (border pixels ON).

VIEW (S@:50)-(100,100) 41,0
Draws a white viewport (pixels ON) that is outlined in black (border pixels OFF).

10 VIEW (1@,10)-(GO0+200) 0,1

20 VIEW (S50:50)-(1004+100) 0,1

30 LINE(RND(S@@) RND(19@))-(RND(50@) »RND(19@))

49 GOTO 3@
First you defined a large viewport that almost covered the entire screen. Next you defined a smaller viewport. The
Random command draws lines within the specified parameters but only the segments of the lines that are within the
parameters of the smaller viewport are visible since it was specified last.

10 VIEW(B2:80)-(400,200) 4041
20 VIEW(100,90)-(300,170) :0 41
30 VIEW(1Z204+100)-(200,200) 20,1
49 VIEW(S?2,50)-(100,100) 4041
Draws four viewports. All further drawing takes place in the last viewport specified.

41

Model 4 Computer Graphics

10 VIEW(Z210,80)-(420,160) 401

20 CIRCLE(30®,120) 4,180 +1

30 LINE(15,15)-(B036d) 1

43 CIRCLE(9®,40) 25041

S0 LINE(40:30)-(500,30) 41
Draws a viewport. Draws a circle but only a portion is within the parameters of the viewport. This circle’s
centerpoint is relative to the upper left corner of the viewport and not to the absolute coordinates of the graphics
Cartesian system. A line is drawn which is totally within the parameters of the viewport. Another circle is drawn
which is totally within the parameters of the viewport. Another line is drawn which is only partially within the
parameters of the viewport.

190 VIEW (190:70)-(4404+180) 4101

20 CIRCLE (300,140) 1701

30 CIRCLE (100,230),400,1

49 LINE (104+10)-(500,:230) 1
Draws a viewport. A circle is drawn but only a portion is within the parameters of the viewport. Another circle is
drawn and a larger portion is within the parameters of the viewport. A line is drawn but only a segment is within the
parameters of the viewport.

& VIEW (function)
Returns Viewport Coordinates

&VIEW returns a corner coordinate of a viewport. It is important to note the parentheses are not optional. If you
enter the & VIEW function without the parentheses, a Syntax Error will result.

To display one of the four viewport coordinates, you must enter one of the following values for p:

® 0 returns the upper left X-coordinate
® | returns the upper left Y-coordinate
® 2 returns the lower right X-coordinate
® 3 returns the lower right Y-coordinate

Important Note: When you have defined several viewports, &VIEW only returns the coordinates of the last-defined
viewport.

42

Graphics BASIC (BASICG)

Examples
Set up the following viewport:
VIEW(100,80)-(220,150) 041

Now type: PRINT BUIEW(®)
Displays: 100

Type: PRINT BUIEW(1)
Displays: 8¢

Enter: PRINT BUIEW(Z)
Displays: 220

Type: PRINT BUIEW(3)
Displays: 159

Set up the following viewports:

VIEW(100,80)-(220,150) ,0,1 (ENTER
VIEW(250,170)-(350,220) 01 (ENTER

Now enter: PRINT &VIEW(D)
Displays: 250
Type: PRINT &VIEW(1)
Diplays: 170
Now type: PRINT RVIEW(Z)
Displays: 350
Type: PRINT &VIEW(3)
Displays: 220

43

Graphics Utilities

3/ Graphics Utilities

There are eight utilities included with the TRS-80 Computer Graphics package which are intended to be used as
stand-alone programs. However, if you are an experienced programmer, you can use these with BASICG and
FORTRAN. The source-code for each utility, that illustrates Graphics programming techniques, is listed later in this
section.

The Graphics Utilities let you:

® Save graphic displays to diskette.

® [oad graphic displays from diskette.

® Print graphic displays on a graphics printer.
® Turn graphics display OFF or ON.

® Clear graphics memory.

To use these utilities from BASICG, use the SYSTEM command followed by the name of the utility in quotation
marks (e.g., SYSTEM"GCLS" (ENTER)) and control returns to BASIC Ready. From TRSDOS, enter the utility
directly, without quotation marks (e.g., GCLS (ENTER)).

To call these routines from FORTRAN, see the Subprogram Linkage section of your TRS-80 Model 4 FORTRAN
Manual (26-2219).

Utilities

Command Action

GCLS Clears graphics screen.

Lists graphics on the printer.
Prints graphic display on the printer without
90 degree rotation.

Turns Graphic Screen ON.

Table 6

GCLS
Clears Graphics Screen

GCLS clears the Graphics Screen by erasing the contents of graphics memory corresponding to the visible Graphics
Screen. GCLS erases graphics memory by writing zeroes (OFF) to every bit in memory. GCLS does not clear the
Text Screen (video memory).

45

Model 4 Computer Graphics

Examples
When TRSDOS Ready is displayed, type:
GCLS
or when the BASICG READY prompt is displayed, type:

SYSTEM"GCLS" (ENTER
or
100 SYSTEM"GCLS™

GLOAD
Loads Graphics Memory from Diskette

Note: There cannot be spaces within a file specification. TRSDOS terminates the file specification at the first space.
With GLOAD, you can load TRSDOS files that have graphic contents into graphics memory. These files must have
been previously saved to diskette using GSAVE.
Examples
When TRSDOS Ready is displayed, type:

GLOAD PROGRAM/DAT.PASSWORD:@
or when the BASICG READY prompt is displayed, type:

SYSTEM"GLOAD PROGRAM" (ENTER
or
100 SYSTEM "GLOAD PROGRAM"

GPRINT

Lists Graphic Display to Printer

i - = -

GPRINT lets you print graphics memory on a graphics (dot-addressable) printer, such as Radio Shack’s DMP-100
(26-1253) or DMP-200 (26-1254). Both of these printers have a 94" carriage. However, distortion will occur when

46

Graphics Utilities

Graphic routines are printed with GPRINT. This is because GPRINT is not a true pixel-by-pixel *‘Screen Dump”’
since the pixel size and spacing on the screen is different from the pixel size and spacing on the Printer. GPRINT is
a point of departure for you to obtain hard-copy representations of graphics.

To print graphic displays, GPRINT turns the contents of the Graphic Screen clockwise 90 degrees and then prints.
However, FORMS must be used to set printing parameters.

See your Model 4 Disk System Owner’s Manual and printer owner’s manual for details on setting printing
parameters.

Important Note! Do not press (BREAK) while GPRINT is executing.

Examples
When TRSDOS Ready is displayed, type:
GPRINT
or when the BASICG READY prompt is displayed, type:

SYSTEM"GPRINT" (ENTER
or
100 SYSTEM"GPRINT"

For a complete GPRINT sample session, see Appendix D.

GPRT2
Print Graphics

GPRT?2 is similar to GPRINT but is designed for use with wide-carriage (15”) printers such as the DMP-400 and
DMP-500.

GPRT?2 is different from GPRINT in that the image is not rotated 90 degrees and a different aspect ratio is used.
If GPRT2 does not produce the quality of printout you desire, try GPRT3 or GPRINT.

Important Note! Do not press (BREAK) while GPRT2 is executing.

Examples
When TRSDOS Ready is displayed, type:
GPRTZ (ENTER
or when the BASICG READY prompt is displayed, type:

SYSTEM"GPRTZ" (ENTER
or
100 SYSTEM"GPRTZ2"

47

Model 4 Computer Graphics

GPRT3
Print Graphics (Double on the Y-Axis)

GPRT3 is similar to GPRINT but is designed for use with wide-carriage (15”) printers such as the DMP-400 and
DMP-500.

GPRT3 is different from GPRINT in that the image is not rotated 90 degrees and a different aspect ratio is used.
If GPRT3 does not produce the quality of print-out you desire, try GPRT2 or GPRINT.

Important Note! Do not press while GPRT3 is executing.

Examples
When TRSDOS Ready is displayed, type:
GPRT3
or when the BAISCG READY prompt is displayed, type:

SYSTEM"GPRT3" (ENTER
or
1090 SYSTEM"GPRT3"

GROFF
Turns Graphics Display OFF

_ L . Z - N =

=

GROFF turns the Graphics Screen OFF. GROFF is different from GCLS since GROFF simply removes the Graphics
display without erasing the contents of graphic memory. GCLS completely clears graphics memory by writing zeroes _
(OFF) to every bit in memory.
Examples
When TRSDOS Ready is displayed, type:

GROFF
or when the BASICG READY prompt is displayed, type:

SYSTEM"GROFF" (ENTER
or
109 SYSTEM"GROFF"

48

Graphics Utilities

GRON
Turns Graphics Display ON

GRON turns the Graphics Screen ON.

Examples
When TRSDOS Ready is displayed, type:
GRON
or when the BASICG READY prompt is displayed, type:

SYSTEM"GRON" (ENTER
or

100 SYSTEM"GRON"

GSAVE
Saves Graphics Memory to Diskette

Note: There cannot be spaces within a file specification. TRSDOS terminates the file specification at the first space.

With GSAVE, the contents in graphics memory is saved under a specified filename which follows the standard
TRSDOS format. To load the file back into memory, use GLOAD.

Examples
When TRSDOS Ready is displayed, type:

GSAVE PROGRAM/DAT.PASSWORD:Q
or when the BASICG READY prompt is displayed, type:

SYSTEM"GSAVE PROGRAM" (ENTER
or

109 SYSTEM"GSAVE PROGRAM"

49

Model 4 Computer Graphics

Graphic Utilities Source Code Listings

0ooo1 i GLOAD -- Save graphics display to disk

poooz

oooo3 PSECT 2600H ;Mode! 4 OQuerlay area
0ooos PRINT SHORT s NOMAC

pooos

0ooos 5 Macros

gooo?

gpooos TRSDOS: MACRO #1

goooe LD As#l

goo10 RST 28H

00011 ENDM

0oo12

ooo13 H TRSDOS SVC Equates

00014

poo1s JFSPEC: EQU 78 ;Test a tilespec

goo1se JOPEN: EQU 59 ;Open an existing ftile
0oo17 aREAD: EQU &7 iRead a record

goo1is aCLOSE: EQU &0 iClose a file

poo1e adERROR: EQU 26 ;Display an error message
goozo abDSPLY: EQU 10 ;Display a message

00021

0onzz2 ; FPort Equates

gooz3

gooz24 X EQU 80H

0oazs Y: EQU B81H

0oozée DATA: EQU 82H

0ooz7 STATUS: EQU 83H

goozs

0oo29 H Main Program

0oo30

00031 GLOAD: PUSH HL ;Save pointer from command | ine
00032

goo33 LD A,10H

00034 ouT (236) 5A iTurn on CRTC ports

0po3s LD BC,1088H iLoad 16 Regs and point to control port
0oo3é LD HLsCRTC+15 il.Load backwards

0oo37

0oo3s H This code programs the CRTC Chip for 80 x 24 screen
goo39 H Only required for Model! 1ll Graphics Boards

goo4n

00041 FDIV: ouT (C)B ;Select Data Register in CRTC
00042 L.D A5 (HL) ;Get the data

00043 ouT (137),A ;Store that in the CRTC
00044 DEC HL iMove to previcous entry
0op4as DJINZ FDIV iDecrement counter

00046

00047 LD HL,FCB ;Point at the FCB

goos4s LD (HL) ,00H iZero the buffer

00049 LD DE s HL ;Build destimation pointer
000so INC DE ;Caopy tirst byte to second position
goost LD BC,32

0oosz LDIR

poos3

00054 POP HL

0ooss LD A,0DH

0o0ss CP (HL)

50

Graphics Utilities

0o0os? JR Z;ERROR
opooss LD DE,FCB
000s9 TRSDOS QaFSPEC iMove tilspec to FCB and do a syntax check
000&0 JR NZ,BOMB
00061
00062 LD HL BUFFER
00063 LD DE;FCB
000&4 LD B,0
00065 TRSDOS QOPEN ;0pen tile if it existss; else create one
000&s6 JR NZ ,BOMB
poons?
00068 LD A,0B3H ;status = inc X atftter write
000&9 ouT (STATUS) 5 A
0oo7o XOR A
00071 ous (X) A 5init X & Y to zero
00072 ouT (Y)sA
00073 LD EsA scounter for X values
00074 LD D80 ;80 X values
0oavs LD B,75 375 disk records for entire screen
on0n7é NXTREC: PUSH DE
00077 LD DE,FCB
goo7e TRSDOS aREAD iRead a record from disk
ooove POP DE
poosn JR NZ ,BOMB
goos1 LD HL ,BUFFER
poosez LD C,B
goas3 LD Bs0 ;256 bytes per record
pooss NGRPH: LD As (HL)
gooses ouT (DATA) sA
gposs INC HL
goos? INC E
pooss LD ASE
goos9e CP D
00090 JR NZ ,EGRPH ;jSame row?
00091 XOR A
po092 LD E A
00093 ouT (X) A iNext row. Set X to zero
00094 LD A5 (YPOS)
0oo9s INC A
00096 LD (YPOS) A
00097 ouT (Y) A
poo9s EGRPH: DJNZ NGRPH ;Go get next graphics byte
00099 LD B»C
00100 DJINZ NXTREC ;Go read next disk record
00101
00102 EXIT: LD DE,FCB
00103 TRSDOS QCLOSE
00104 LD A, 0FCH ;Status = graphics otfs no waits, no incs.
0010s% ouT (STATUS) 5A
00106 LD A (EFLAG)
go107 LD LA
go1o8 LD H>0
00109 CP H
00110 RET ;Return to TRSDOS or BASIC
00111
00112 H Error exits
- 00113
00114 ERROR: LD HL » PARM ;Complain
00115 TRSDOS aDSPLY
00116 JR EXIT

51

00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
0o12s8
00129
00130
00131
00132

BOMB :

PARM:
EFLAG:
YPOS:
FCB:
BUFFER:

CRTC:

LD
OR
LD
TRSDOS
JR

DEFM
DEFB
DEFB
DEFS
DEFS

DEFB

END

Model 4 Computer Graphics

(EFLAG) 5 A

ocaH

CHA

dERROR iDisplay error message
EXIT

'Filespec required™’
0

0

32

256

?%,80,85,8,25,4,24,0,9,0,0,0,0,0,0

GLOAD

52

Graphics Utilities

00001 ; GSAVE -- Save graphics display to disk

gooaz

pooao3 PSECT 24600H iMode! 4 Overlay area

00004 PRINT SHORT s NOMAC

pooos

poooé 3 Macros

pooaz

pooose TRSDOS: MACRO #1

oooae LD As#1

00010 RST 28H

00011 ENDM

00012

00013 H TRSDOS SVC Equates

00014

00015 aFSPEC: EQU 78 ;Test a tilespec

00016 JINIT: EQU 58 ;Open an existing files or create a new aone
00017 AWRITE: EQU 75 iWrite a record

goois aCLOSE: EQU &0 iClose a file

poo19 dERROR: EQU 26 iDisplay an error message
00020 aDSPLY: EQU 10 iDisplay a message

po021

ppoz22 H Port Equates

00023

00D24 X: EQU 80H

0002s Y: EQU 81H

00026 DATA: EQU B82H

0ooz27 STATUS: EQU 83H

poozs

pooze ; Main Program

00030

00031 GSAVE: PUSH HL ;Save pointer from command |ine
00032

00033 LD A,10H

00034 ouT (238) 5A iTurn on CRTC parts

poo3s LD BC,1088H iLoad 16 Regs and point to control port
00036 LD HL,CRTC+15 iLoad backwards

poo37

poo3s H This code programs the CRTC Chip tfor 80 x 24 screen
0oa39 H Only required tor Mode!l 11l Graphics Boards

00040

00041 FDIV: ouT (C)»,B iSelect Data Register in CRTC
00042 LD A (HL) iGet the data

00043 ouT (137) A iStore that in the CRTC

00044 DEC HL iMove to previous entry

D0045 DJUNZ FDIV ;Decrement counter

00046

00047 LD HL,FCB ;Point at the FCB

00048 LD (HL) ,00H iZero the buffer

00049 LD DE>HL iBuild destination pointer
0ooso INC DE ;Capy first byte to second position
poos1 LD BC,32

poos2 LDIR

poos3

po0S4 POP HL

0ooss LD A, 0ODH

po0sée CP (HL)

000s7? JR Z,ERROR

pooss LD DE,FCB

0oose TRSDOS QFSPEC iMove tilspec to FCB and do a syntax check
000&0 JR NZ ;BOMB

53

Model 4 Computer Graphics

00061

00062 LD HL BUFFER

00063 LD DE,;FCB

000&4 LD B,0

00065 TRSDOS QINIT ;Open file it it existss, else create one
00066 JR NZ,BOMB

000&7

000é&8 LD A,DE3H istatus = inc X atter read
00069 ouT (STATUS) A

[s]s]alrds] XOR A

00071 ouT (X) A iinit X & Y to zero

ppoovz ouT (Y)sA

goo73 LD EsA jcounter for X values
00074 LD D,80 ;80 X values

0oo7s LD B,7S 375 disk records for entire screen
00076 NXTREC: LD HL BUFFER

00077 LD C,B

poao7s LD B,0 ;256 bytes per record
aoao79e NGRPH: IN A (DATA) ;Get next graphics byte
pooso LD (HL) 5 A i and put in butfer

goos1 INC HL

opoosz INC E

oooe3 LD ASE

pooss4 CP D

0oaoss JR NZ ,EGRPH ;Same row?

pooss XOR A

ooos? LD E>A

pooss ouT (X)>A ;Next row. Set X to zero
00089 LD A5 (YPOS)

0poo<0 INC A

00091 LD (YPOS) 5A

00092 ouT (Y)>A

00093 EGRPH: DJNZ NGRPH ;Go get next graphics byte
00094 PUSH DE

0009s LD DEFCB

00096 TRSDOS QWRITE ;Write a record to disk
00097 POP DE

00098 JR NZ ,BOMB

00099 LD B,C

00100 DJNZ NXTREC ;6o till butter for next record
00101

00102 EXIT: LD DE,FCB

go103 TRSDOS aCLOSE

00104 LD A,0FCH ;Status = graphics otfs; no waits, no incs.
0010s ouT (STATUS) 5A

00106 LD A5 (EFLAG)

00107 LD LA

po108 LD H>0

00109 OR A ;Test Error byte

00110 RET ;Return to TRSDOS or BASIC
00111

00112 H Error exits

00113

00114 ERROR: LD HL s PARM ;Complain

00115 TRSDOS aDSPLY

00116 JR EXIT

00117

00118 BOMB: LD (EFLAG) > A

00119 OR 0caH

00120 LD CsA

54

Graphics Utilities

00121 TRSDOS QERROR ;Display error message
00122 JR EXIT

00123

00124 PARM: DEFM 'Filespec required™’

00125 EFLAG: DEFB 0
00126 YPOS: DEFB 0

00127 FCB: DEFS 32
00128 BUFFER: DEFS 256
00129

00130 CRTC: DEFB ?%,80,85,8,25,4,24,0,9,0,0,0,0,0,0
00131
00132 END GSAVE

55

Model 4 Computer Graphics

00001 5 GRON == Turn on graphics display with waits on

gooo2

pooo3 PSECT 2600H ;Mode!l 4 Overlay area
00004 PRINT SHORT s NOMAC

0ooos

pooos ; Macros

gooo?

0ooos TRSDOS: MACRO #1

00oo9 LD As#1l

goo1o RST 28H

00011 ENDM

00012

po0o13 3 Port Equates

00014

00015 STATUS: EQU 83H

00016

00017 H Main Program

goo1s

00019 GRON: LD A,10H

00020 ouT (236) A ;Turn an CRTC ports
00021 LD BC,1088H sLoad 16 Regs and point to control port
goozz LD HL;CRTC+1S sLoad backwards

00023

00024 H This code programs the CRTC Chip for B0 x 24 screen
0oo2s H Only required for Mode!l II]l Graphics Boards
00026

00027 FDIV: ouT (C)»B ;Select Data Register in CRTC
0oozs LD A (HL) ;Get the data

0ooz29 ouT (137),A ;Store that in the CRTC
0oa30 DEC HL iMove to previous entry
00031 DJNZ FDIV ;Decrement counter
00032

00033 LD A,0FFH

00034 ouT (STATUS) sA

00035 XOR A

00036 LD HL 0

po037 RET iReturn to TRSDOS ar BASIC
00038

00039 CRTC: DEFB 9%,80,85,8,25,4,24,0,9,0,0,0,0,0,0
00040

00041 END GRON

56

0ooo1
ooooz
0ooo3
00004
0ooos
0ooos
oooo?
oooos
0ooo9
00010
ooo11
0oo1z
00013
00014
0001sS
00016
0oo17
ooo18
00019
ooozo
0oo21
00022
00023
00024
00025
00026
00027
00028
ooo29
00030
0oo31
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
ooo48
00049
000oso
000S1
00052
000S3
000S4
000SS
00056
0oos?
0ooss
000Ss9
00060

Graphics Utilities

3 GPRINT -- Print graphics screen to graphics printer
PSECT 2600H ;Model| 4 Overlay area
PRINT SHORT s NOMAC
H Macros
TRSDOS: MACRO #1
LD As#1
RST 28H
ENDM
; TRSDOS SVC Equates
aPRT: EQU b6 iPrint a character on the printer
@PRINT: EQU 14 iPrint a line on the printer
aFLAGS: EQU 101 iPoint to system control flags
H Port Equates
X: EQU 80H
Y: EQU 81H
DATA: EQU 82H
STATUS: EQU 83H
3 Main Program
GPRINT: LD A,10H
ouT (236) 5A ;Turn on CRTC ports
LD BC,15
LD HL s CRTC
H This code programs the CRTC Chip for 80 x 24 screen
H Only required for Model II1l Graphics Boards
FDIV: LD AsB iProgram CRTC chip for 80 by 24
ouT (136) 5A
LD As (HL)
ouT (137) A
INC HL
INC B
LD AsB
CP C
JR NZ,FDIV
LD A,0DBH ;Output a Control byte to cause
ouT (STATUS) »A 3 Y to autaomatically dec. on a read
CALL INITBF iZero print bufter
XOR A ;8et A to O
ouT (X) A sInitialize the X position
LD (BPOS) > A H » ” bit position
LD (XLOC) sA 3 » » » location counter

Set the printer to start graphics mode

LD Cy12H ;Begin Graphics mode
TRSDOS aPRT ;Output Character
JP NZ,BOMB ;Printer Not Ready

57

00061
00062
00063
00064
00065
00066
00067
00Dé&8
00069
0007o
ooo71
ooaovz
0oo73
00074
0oovs
00076
ooa77
ooovs
00079
oooso
ooos1
ooosz
ooosa3
oooss4
0pooss
0ooss
ooos?
oooss
ooos?
0oo<90
00091
00092
00093
00094
00095
00096
00097
ooo9s
00099
00100
00101
00102
00103
00104
00105
00106
0o107
oo108
00109
00110
00111
00112
00113
00114
0011s
00116
00117
00118
00119
00120

FDIV1:

COLUMN::

DECJ:

PAST :

SETO:

PRNDRS :

Model 4 Computer Graphics

Turn ott international character set translation
TRSDOS QaFLAGS
LD A;(IY+8) iGet IFLAGS
LD (OLD) A ;jSave a copy of the current settings
RES 65(1Y+8) iTurn ottt bit & (Intl. Translation)
LD IX,>BUFFER ipoint IX at the printer butftfer
LD B,240 ;g0 through a whole column of bytes
LD AsB iPut value in A and decrement
DEC A i s0 it can be put out as
ouT (Y)sA 3 the Y position
LD HL s MASK iPoint at character mask
IN A, (DATA) jinput a graphics byte
AND (HL) ichop ott all but proper bit
CALL PO,SETO ;it result is odd parity set bit O
; otherwise bit A is O
LD HL »BPOS ;point HL at the bit position
PUSH BC ;save register B (ftor DJIJNZ loop)
LD B, (HL) iget count
INC B iincrement (in case it is 0)
DEC B imove bit lett BPOS number of times
JR Z,PAST it dones move on...
RLC A ;move bit left one position
JR DECJ irepeat loop
POP BC ;jget |loop counter back
OR (IX) imerge A with byte ot printer buftfer
LD (IX)>A ;put merged result in buttfer
INC IX jincrement butfer paointer
DJINZ COLUMN jcantinue loop
LD A7 ;See it BPOS has gotten to 8.
INC (HL) H It it has (printer uses 7 bits)
CP (HL) ; print the buffer and reset
caLL Z;PRNDRS H BPOS to O
LD HL »MASK iAtter getting a vertical row ot bits
RRC (HL) i rotate the mask right one position
LD A,80H iCheck to see if its back to
CP (HL) i it’s original value; if not
JR NZ,FDIV1 ; 90 get another row ot bits
LD As (XLOC) iIt sos get X pos (to increment it)
CP 79 iCheck to see it we are at the end...
JP Z,BYE
INC A jotherwise increment the X counter
LD (XLOC) sA jand store it back
ouT (X) A jalso update the port value
JR FDIV1 inow 9o get another row of bits
LD A1l ;set A to binary 0000 0001
RET i and return
This routine edits the print buffer to remove trailing blanks

and then sends the data

HL ,BUFFER+239

D,0DH
B,239
A,80H

to the printer

;Set up the

iPrint terminator
;Start testing

;Test against nothing

58

00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
0015S
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165

CLEAN:

STOP:

INITBF :

BYE:

BOMB :

MASK :
BUFFER:

BPOS:
XLOC:
OLD:

CRTC:

XOR
LD

Initiali

TRSDOS

LD
ouTt

TRSDOS
LD
LD

LD
RET

DEFB
DEFS
DEFB
DEFB
DEFB
DEFB

DEFB

END

(HL)
NZ,STOP
(HL)»D

HL

CLEAN

HL »BUFFER
aPRINT

A
(BPOS) 5 A

Graphics Utilities

;Anything there?
;Found something to print
;Then get rid ot it

;Shorten the |ine as much as possible
;Point to the start of the text

iPrint the contents of BUFFER and do a C/R
sclear A

jreset bit position counter

ze the Printer Butfer

HL ;BUFFER
(HL) ,80H
DE>HL

DE

BC,239

PRNDRS
C,1EH
aPRT

A, 0OFCH
(STATUS) »A

aFLAGS
A, (OLD)
(1Y+8),A

HL,O

80H
240
0ODH
0
0
0

iPoint at the bufftfer

sFill the butter with x’807

;Build destination pointer

;Copy tirst byte to second pasition
;Zero 240 bytes

iEnd Graphics Print Mode

;Status = graphics otfts; no waits, no incs

;Point to system flags again
;Get old contents ot IFLAGS
;Set things back the way they were

;Zero Return Code
iReturn to TRSDOS or BASIC

;Mask to use in extracting bits
iPrinter data buffer
sTerminator for Print Line

iBit position in printer bufftfer
;Current X location value

30ld contents ot [FLAGS

99,80,85,8,25,4,24,24,0,9,0,0,0,0,0,0

GPRINT

59

0ooo1
ooooz2
oooo3
00004
0ooos
00006
ooooz
oooos
oooo9
ooo1o
ooo11
00012
00013
00014
0o01s
00016
00017
ooo1s
00019
0aozo
ooo21
00022
00023
00024
00025
0oozs
oooz27
0oozse
00029
00030
0oo31
00032
00033
00034
0oo3s
00036
0oo37
ooo3s
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
000S0
00oos1
00052
0oos3
0o0S4
00o0ss
000Sé
0oas?
0oosse
0oose
00060

i GCLS -- Clear graphics screen
PSECT 2600H iMode!l 4 Overlay area
PRINT SHORT s NOMAC
H Macros
TRSDOS: MACRO #1
LD As#l
RST 28H
ENDM
H Port Equates
X: EQU 80H
Y: EQU 81H
DATA: EQU 82H
STATUS: EQU 83H
INCY: EQU 70H
INCXY: EQU 30H
H Main Program
GCLS: LD A,10H
ouT (238) 5A iTurn on CRTC parts
LD BC,1088H iLoad 16 Regs and point to control port
LD HLsCRTC+15 ;Load backwards
H This code programs the CRTC Chip for 80 x 24 screen
H Only required for Madel 1l Graphics Boards
FDIV: ouT (C)»B ;Select Data Register in CRTC
LD A, (HL) ;Get the data
ouT (137) A ;Store that in the CRTC
DEC HL ;Move to previous entry
DJNZ FDIV ;Decrement counter
LD A5 INCY ;Set graphics status:
ouT (STATUS) 5 A 5 Graphics ofts; waits ofts inc Y
XOR A
ouT (X)>A ;Set X & Y address to O
ouT (Y)sA
LD B,80 ;80 X addresses
OUTER: LD C:B
LD B»239 3239 Y addresses. 240th done atfter loop.
INNER: OUT (DATA) ;A ;Zero graphics memary
DJNZ INNER ;Go clear next Y
LD A INCXY ;Set status to inc X & Y after write
ouT (STATUS) A
XOR A
ouT (DATA) ;A ijand clear last (240th) Y address
ouT (Y)>A ;Set Y back to zero
LD A5 INCY iReset status to inc Y only
ouT (STATUS) 5 A
XOR A
LD B»C
DJINZ OUTER iGo clear next X
LD A,0OFCH ;Set status: graphics nff;\ga waitss; nao
ouT (STATUS) A

Model 4 Computer Graphics

incs

60

00061
00062
00063
00064
00065
00066
00067
00068

CRTC:

XOR

RET

DEFB

END

A
HL 0

Graphics Utilities

iReturn to BASIC

or TRSDOS

9%,80,85,8,25,4,24,24,0,9,0,0,0,0,0,0

GCLS

61

Model 4 Computer Graphics

pooo1l i GROFF == Turn graphics display oft with waits off
poooz

oooo3 PSECT 2600H iMode!| 4 Overlay area
00004 PRINT SHORT s NOMAC

pooos

00006 H Macros

goooz

pooos TRSDOS: MACRO #1

00009 LD As#1

poo10 RST 28H

00011 ENDM

00012

0poo13 ; Port Equates

00014

00015 STATUS: EQU B83H

00016

poo17 H Main Program

poo18

00019 GROFF: LD A>10H

00020 ouT (236) A iTurn an CRTC ports
00021 LD BC,1088H jLoad 16 Regs and point to control port
00022 LD HL,CRTC+1S iLoad backwards

0oonz23

00024 H This code programs the CRTC Chip for 80 x 24 screen
0oo2s H Only required tor Model I1]l Graphics Boards
00026

0ooz7 FDIV: ouT (C)»B ;iSelect Data Register in CRTC
0oozs LD As (HL) iGet the data

00029 ouT (137),A ;Store that in the CRTC
00030 DEC HL iMove to previous entry
0po31 DJNZ FDIV ;Decrement counter
00032

00033 LD A,0OFCH

00034 ouT (STATUS) s A

0oo3s XOR A

00036 LD HL 0

0po37 RET ;Return to TRSDOS or BASIC
00038

00039 CRTC: DEFB 9%,80,85,8,25,4,24,0,9,0,0,0,0,0,0
00040

a0041 END GROFF

62

0o0oo1
ooooz
0ooo3
00004
0ooos
pooos
oooaz
oooos
oooo9
0oo10
00011
poo1z2
00013
00014
00015
00016
00017
poo1is
poo19
0oozo
pooz21
ooozz
00023
00024
0o02s
0oozs
oooz?
ooozs
0ooz29
00030
0oo31
00032
0oo33
00034
0003s
00036
00037
Doo3s
00039
00040
00041
00042
00043
00044
00045
00046
00047
0oo48
00049
0ooso
0oost
00052
000s3
000S4
000ss
0ooss
0oos7
oooss
0oos9
000s&0

Graphics Utilities

port

; GPRT2 -- Print graphics X horizontal
PSECT 2600H iMode!l 4 Overlay area
PRINT SHORT ;NOMAC
3 Macros
TRSDOS: MACRO #1
LD As#1
RST 28H
ENDM
H TRSDOS SVC Egquates
aPRT: EQU 6 iPrint a character on the printer
aPRINT: EQU 14 iPrint a line on the printer
aFLAGS: EQU 101 iPoint to system control flags
H Port Equates
X: EQU 8aH
Y: EQU 81H
DATA: EQU 82H
STATUS: EQU 83H
H Main Program
GPRT2: LD A, 10H
ouT (236) A ;Turn on CRTC ports
LD BC,1088H jlLoad 16 Regs and point to control
LD HL,CRTC+15 slLoad backwards
H This code programs the CRTC Chip for 80 x 24 screen
H Only required for Model IIl Graphics Boards
FDIV: ouT (C)>»B ;Select Data Register in CRTC
LD A (HL) ;Get the data
ouT (137)>A ;Store that in the CRTC
DEC HL iMove to previous entry
DJNZ FDIV iDecrement counter
3 Set the printer to start graphics mode
LD Cy12H ;Begin Graphics mode
TRSDOS aPRT iOutput Character
JR NZ ,BOMB ;Printer Not Ready
H Turn oft international character set translation
TRSDOS aFLAGS
LD A;(1Y+8) iGet IFLAGS
LD (OLD)>»A ;Save a copy of the current settings
RES &(1Y+8) ;Turn ottt bit 6 (Intl. Translatiaon)

Open Video Memory

LD c»,0
LD A5 0E3H
ouT (STATUS) »A

iGraphics Y address
;Open RAM with video waits

00061
00062
00063
00064
00Dé&S
00066
00067
00068
00069
00070
00071
00072
00073
00074
0oavs
00076
ooavz
ooo7e
00079
oooso
ooos1

ooosez
ooos3

ABBae

0ooses
oooa?
oooss
ooos?
00090
00091
00092
00093
00094
0o09s
00096
00097
0oo9s
00099
00100
00101
00102
00103
00104
00105
00106
00107
ooi08
00109
00110
00111
00112
00113
00114
00115
00116
00117
po11e
00119
00120

NEWLN:

NEWRW :

BYTE1L:

BIT:

OFF :

DONE :

BOMB :

Model 4 Computer Graphics

Initialize the Printer Butfer

CALL
JR
JR

CALL

LD
TRSDOS

LD
ouT

TRSDOS
LD
LD

LD

BC

HL ;BUFFER
(HL) »80H
DE sHL

DE

BC,639

BC
D1

AsC

(Y)sA

C

HL BUFFER
A

(X)sA
B,80

BC
A, (DATA)

£ 80+

AsC

E
Z,0FF
A>D
(HL)
(HL) s A
HL

E
NZ,BIT
BYTE1
BC

A>240

C

Z , DONE
D

P >NEWRW

PRINT
NZ,BOMB
NEWLN
PRINT

Cy1EH
aPRT

A,0OFCH
(STATUS) 5A

aFLAGS
A>(OLD)
(1Y+8) A

HL 0

;Save BC
iPoint at the buffter
sFill the butftter with x’80°
iBuild destination pointer
;Copy tirst byte to second position
iZero &40 bytes

;Restore BC

;Bit in but to set

iUpdate Y address

;Restart X address
iGet 80 graphics bytes

iSave Y & |loop counter

;Gave aphics byte i C
1BaYeL T aPhisE By right

;Set bit in bufter
iNext butfer byte
sNext bit

iLast Y address?

iNext bit in buffer

iPrint butfter
3An error occurred.

;End Graphics Print Mode
iWe do not care it this ane fails.

iStatus = graphics ottt no waits, no
iPoint to system flags again
iGet old contents of IFLAGS

;Set things back the way they were

iZero Return Code

incs

64

00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148

PRINT:

PFDIV:

STOP:

CRTC:

OLD:
BUFFER:

DEFB
DEFB
DEFS
DEFB

END

BC

HL > BUFFER+63%
D,0DH
BC,440

A (HL)
80H
NZ,STOP
BC

HL

AsB

C
NZ,PFDIV
HL

(HL) »0DH
HL BUFFER
adPRINT

BC

Graphics Utilities

iReturn to TRSDOS or BASIC

iPoint to the end ot the butffer

iKey on the terminator

iSet counter

iLook at a byte

ils it a nothing?

iThen stop

;Decrement counter

;Decrement pointer

;See it we are done

sWel 17

;Loop tor more

sMove pointer back one

sLoad a terminator atter last valid byte
;Point at the text to be printed

;Display it

;Dones exit

99,80,85,8,25,4,24,24,0,9,0,0,0,0,0,0

0
640
ODH

GPRT2

30ld contents ot IFLAGS

;Carriage return

65

Model 4 Computer Graphics

gooo1 H GPRT3 -- Print graphics X horizontal double Y axis

0oaooz2

0o0a3 PSECT 2600H iMode! 4 Overlay area

00004 PRINT SHORT ;NOMAC

gooos

0ooos H Macras

goaoo?

gooose TRSDOS: MACRO #1

0ooo9 LD As#1

00010 RST 28H

00011 ENDM

00012

00013 H TRSDOS SVC Equates

00014

goo1s APRT: EQU 1) iPrint a character on the printer
00016 APRINT: EQU 14 iPrint a line on the printer
00017 aFLAGS: EQU 101 iPoint to system control flags
goo1s

00019 H Port Equates

goozo

00021 X EQU 80H

00022 Y: EQU 81H

0ooz23 DATA: EQU B82H

00024 STATUS: EQU 83H

0002s

00026 H Main Program

00027

0oozs GPRT3: LD A,10H

goo29 ouT (2386) A iTurn on CRTC ports

00030 LD BC,1088H iLoad 16 Regs and point to control port
00031 LD HL,CRTC+15 iLoad backwards

00032

00033 H This code programs the CRTC Chip for B0 x 24 screen
00034 H Only required tor Model [l]l Graphics Boards

0oo3s

00036 FDIV: ouT (C)»B iSelect Data Register in CRTC
0oa37 LD A (HL) ;Get the data

0on38 ouT (137) A iStore that in the CRTC

0oa39 DEC HL iMove to previous entry

00040 DJNZ FDIV iDecrement counter

00041

00042 H Set the printer to start graphics mode

00043

00044 LD Cr12H iBegin Graphics mode

00045 TRSDOS aPRT iOutput Character

00046 JR NZ ,BOMB iPrinter Not Ready

00047

00048 H Turn ott international character set translation
00049

0o0so TRSDOS QFLAGS

0oost1 LD A, (1Y+8) iGet IFLAGS

00052 LD (OLD) A ;Save a copy ot the current settings
00aos3 RES 6,(1Y+8) iTurn aft bit & (Intl. Translation)
000S4

000ss H Open Video Memory

00oss

000s7 LD C,0 iGraphics Y address

00o0ss LD A,0E3H ;Open RAM with video waits
000os9 ouT (STATUS) 5 A

00040

66

00061
00062
00063
00064
000&S
00066
poos?
000s8
0oose9
0oo7o
0oo71
ooaovz
00073
00074
00075
poove
00077
poovs
00079
oooso
ooos1
ooosz
oooss3
pooss
0ooss
0ooas
ooos?
pooes
ooose
0oo<90
0oo91
0oo92
0oo93
00094
0o09s
00096
00097
ooo9s
00099
00100
00101
00102
00103
00104
00105
00106
00107
0o108
00109
00110
00111
00112
00113
00114
0o011s
00116
00117
00118
00119
00120

NEWLN:

NEWRW:

NEWR1 :

BYTE:
BYTE1:

BIT:

OFF :

Graphics Utilities

Initialize the Printer Bufter

D»>3

BC

DE

HL ,BUFFER
(HL) ,80H
DEsHL

DE

BC,639

DE
BC

A,C

(Y) A
A,40H

D
Z>;NEWR1
C

HL ;BUFFER
A

(X)) A
B,80
Asé

D
NZ,BYTE
Dsé

BC

A, (DATA)
CyA
Es80H
AC

E
Z,0FF
AsD
(HL)
(HL) A
HL

E
NZ,BIT
BYTE1
BC

A>240

C

Z ; DONE
D

D
Z;ENDRUW
P>NEWRW
A, 7FH

D

DA

NZ s NEWRW
D3
ENDR2

;Bit(s) in butft to set

;Save BC

;Point at the buttfer

5Fill the buftfer with x’°80°
;Build destination pointer

iCopy first byte to second positian
;Zero 640 bytes

;Restore BC

iUpdate Y address

31t printing row second time
3 Move to next row

iRestart X address
;Get 80 graphics bytes

jSave Y & loop counter

;Save graphics byte in C
iGet bits left to right

;Set bit in bufter
;iNext butter byte
iNext bit

sLast Y address?

iNext bit in buftfer

67

Model 4 Computer Graphics

00121 ENDRW: LD D>1

00122 ENDR2: PUSH DE

00123 CALL PRINT iPrint butter

00124 POP DE

00125 JR NZ ,BOMB iPrinter Error

00126 JR NEWLN

00127

00128 DONE : CALL PRINT

00129

00130 BOMB: LD Cy1EH iEnd Graphics Print Mode

00131 TRSDOS QaPRT iWe do not care it this one ftails.
00132

00133 LD A,0FCH ;Status = graphics oft, no waitss no incs
00134 ouT (STATUS) »A

00135

00136 TRSDOS QFLAGS iPoint to system tflags again
00137 LD A (OLD) iGet old contents of IFLAGS
00138 LD (1Y+8) A iSet things back the way they were
00139

00140 LD HL,0 iZero Return Code

00141 RET iReturn to TRSDOS or BASIC

00142

00143 PRINT: PUSH BC

00144 LD HL ;BUFFER+4639 iPoint to the end ot the buffer
00145 LD D,0DH ;Key on the terminator

00146 LD BC,640 iSet counter

00147 PFDIV: LD A (HL) ilLook at a byte

00148 CP B80H 3ls it a nothing?

00149 JR NZ,STOP ;Then stop

00150 DEC BC iDecrement counter

00151 DEC HL iDecrement pointer

00152 LD AsB ;See it we are done

00153 OR C iWel I1?

00154 JR NZ,PFDIV sLoop far more

0015s STOP: INC HL iMove pointer back one

00156 LD (HL) >0DH iLoad a terminator after last valid byte
00157 LD HL ,BUFFER iPoint at the text to be printed
pD1s8 TRSDOS a@PRINT iDisplay it

00159 POP BC

00160 RET iDones exit

00161

00162 CRTC: DEFB 99,80,85,8,25,4,24,24,0,9,0,0,0,0,0,0
00163

00164 OLD: DEFB 0 30ld contents of IFLAG®
001465 BUFFER: DEFS 640

001646 DEFB 0ODH ;Carriage return

00167

00168 END GPRT3

68

Graphics Subroutine Library (FORTRAN)

4/ Graphics Subroutine Library (FORTRAN)

The Graphics Subroutine Library included on the Computer Graphics diskette lets you use the functions of TRS-80
Computer Graphics while programming in Model 4 FORTRAN (26-2219). This library (GRPLIB/REL) must be
linked to any FORTRAN program that accesses the Graphics Subroutines.

BASICG vs. the Graphics Subroutine Library

The Graphics Subroutine Library contains subroutines which provide the same capabilities as the Graphics commands
and functions in BASICG. The Graphics subroutines have basically the same names and parameters as the BASICG
commands. The major differences between the Library subroutines and the BASICG commands are:

® The BASICG command LINE has three corresponding library subroutines: LINE, LINEB, and LINEBF. LINEB
and LINEBF provide the functions of the BASICG command LINE with the parameters B and BF respectively.

® The BASICG command PAINT has two corresponding library subroutines: PAINT and PAINTT. PAINT is for
painting solid black or white, and PAINTT is for painting with tiling.

® The Library subroutines that correspond to BASICG commands that use (x,y) coordinates (except for VIEW) use
(x,y) coordinates that have been previously set. The subroutines used to set the coordinates are SETXY and
SETXYR.

Setting Points using SETXY and SETXYR

The coordinates specified by SETXY or SETXYR will be called the ‘‘current’’ and ‘‘previous’’ coordinates.
Subroutines that use one (x,y) coordinate pair use the ‘‘current’’ coordinates and subroutines that use two (x,y) pairs
use both the ‘“‘current’’ and the ‘‘previous’’ coordinates. Each call to SETXY or SETXYR sets the coordinates as
follows:

1. Assign the values of the ‘‘current’” (x,y) coordinates to the ‘‘previous’’ (x,y) coordinates, (discarding the old
‘‘previous’’ coordinates).

2. Assign new values for the ‘‘current” (x,y) coordinates as specified by the arguments supplied. SETXY simply
sets the “‘current’’ coordinates to the values of its arguments. SETXYR adds the values of its arguments to the
‘‘current’’ coordinates to obtain the new coordinates.

Initialization

Before any calls are made to Graphics, the Graphics library and board must be initialized. A special initialization
routine (GRPINI) is included in the library. A call to GRPINI must be made as the first access to the Graphics

library.

Example
90100 C SAMPLE INITIALIZATION
00150 DIMENSION V(32 :30)
00200 CALL GRPINI (@)

69

Model 4 Computer Graphics

Linking
The Library (GRPLIB/REL) must be linked to any programs that access the Graphics Subroutines. You must use the
linker (L80) to generate the load module.

Example

L8O

*SAMPLE:1-N

*GRPHSAM)GRPLIB-S,FORLIB-S-U
*-E

This example links both the Graphics Library and the FORTRAN Subroutine Library to the relocatable file
GRPHSAM/REL. In this example, SAMPLE:1-N is the file name, drive specification, and switch, respectively;
GRPHSAM, GRPLIB-S, FORLIB-S, and —U are the names of the relocatable modules to be linked and their
respective switches. —E ends the routine and creates the executable program SAMPLE. The *’s in the example are
prompts for the user — not data to be entered.

Note: If there are unresolved external references, the FORTRAN Library may need to be scanned a second time.

Errors

If you enter incorrect parameters for any of the Graphics Subroutines, your screen will display:
GRAPHICS ERROR

and return program control to TRSDOS Ready. This is the only error message you’ll get when executing the
Subroutines.

Important Note: Free memory is utilized by the Graphic Routine for temporary storage. Extreme care should be
exercised if your program accesses this memory.

Routines/Functions

Most of the FORTRAN Subroutines and functions described in this section have a corresponding command in the
Graphics BASIC Language Reference section of this manual.

70

Graphics Subroutine Library (FORTRAN)

FORTRAN Routines

Routine Action

CIRCLE Draws a circle, arc, semicircle, or ellipse.

CLS Clears the Graphics Screen.

GET Reads the contents of a rectangular pixel area into an array.

GPRINT Displays textual data on the Graphics Screen.

GRPINI Graphics initialization routine.

LINE Draws a line.

LINEB Draws a box.

LINEBF Draws a filled box.

LOCATE Sets the direction for displaying textual data on the
Graphics Screen.

PAINT Paints the screen in specified OFF/ON color.

PAINTT Paints the screen in a specified pattern.

PRESET Sets pixel OFF/ON.

PSET Sets pixel OFF/ON.

PUT Puts the stored array on the screen.

SCREEN Selects the screen.

SETXY Sets (x,y) coordinates (absolute).

SETXYR Sets (x,y) coordinates (relative).

VIEW Sets up a viewport where graphics is displayed.

Table 7

FORTRAN Functions

Function Action
POINT Reads a pixel's value at a specified coordinate.
FVIEW Reads a viewport's parameters.

Table 8

71

Model 4 Computer Graphics

CIRCLE

Draws a Circle, Arc, Semicircle, Point or Ellipse

CIRCLE draws a circle. By varying start, end, and aspect ratio, you can draw arcs, semicircles, or ellipses using
current X- and Y-coordinates as the centerpoint (set by SETXY or SETXYR).

If start and end are 0.0, a circle is drawn starting from the center right side of the circle. Note: In the CIRCLE
statement, end is read as 2 x PI even though you have entered 0.0. If you enter 0.0 for aspect ratio, a symmetric
circle is drawn.

Example
CALL CIRCLE(100+1,0.0+0.0+0.0)

Sample Program

This example draws and paints a circle.

poe1e C SAMPLE PROGRAM FOR CIRCLE

00020 LOGICAL COLOR,OPTION

00030 COLOR=1

00040 OPTION=@

00050 CALL GRPINI(OPTION)

0060 CALL CLS

o070 CALL SETXY(300,100)

o080 CALL CIRCLE(1@®+COLOR+@.2+2.2,0,0)
0090 CALL PAINT(COLOR COLOR)

2100 END

CLS
Clears Graphics Screen

Example
CALL CLS

Sample Program (see CIRCLE)

72

Graphics Subroutine Library (FORTRAN)

GET
Reads Contents of a Rectangular
Pixel Area into an Array

GET reads the contents of a rectangular pixel area into an array for future use by PUT. The pixel area is a group of
pixels which are defined by the current x and y, and the previous X- and Y-coordinates specified by the SETXY
call. The first two bytes of array are set to the horizontal (X-axis) number of pixels in the pixel area; the second two
bytes are set to the vertical (Y-axis) number of pixels in the pixel area. The remainder of array represents the status
of each pixel (either ON or OFF) in the pixel area. The data is stored in a row-by-row format. The data is stored
eight pixels per byte and each row starts on a byte boundary.

Array Limits

When the array is defined, space is reserved in memory for each element of the array. The size of the array is
limited by the amount of memory available for use by your program — each real number in your storage array uses
four memory locations (bytes).

The array must be large enough to hold your graphic display and the rectangular area defined must include all the
points you want to store.

To determine the minimum array size:
1. Divide the number of X-axis pixels by 8 and round up to the next higher integer.
2. Multiply the result by the number of Y-axis pixels.
When counting the X-Y axis pixels, be sure to include the first and last pixel.
3. Add four to the total.

4. Divide by four (for real numbers) and two (for integers) rounding up to the next higher integer. (Note: If you’re
using a LOGICAL array, the result of Step #3 above will produce the desired array size.)

When using arrays the position and size of the rectangular pixel area is determined by the current and previous (x,y)
coordinates.

Position: upper left corner = startpoint = (xl,yl)
lower left corner = endpoint = (x2,y2)

Size (in pixels): Width
length

x2—xl+1
y2—-yl+1

Example
CALL GET(A,4000)

73

Model 4 Computer Graphics

Sample Program

This example draws a circle, saves the circle into an array, then restores the array to the graphics video.

gpase C SAMPLE FOR GET AND PUT
00100 LOGICAL V(128),,ACTION
00150 ACTION=1
PO200 CALL GRPINI(®)
20300 CALL CLS
00350 C DRAW A CIRCLE
o400 CALL SETXY(30.:30)
20500 CALL CIRCLE(10:+1,0.0:0.0:0.0)
0055¢ C SET COORDINATES FOR GET ARRAY
vdrdey g CALL SETXY(10.:10)
00700 CALL SETXY(40.,40)
oe75@¢ C STORE GRAPHICS INTO ARRAY WITH GET
0800 CALL GET(V,128)
00900 DO 1@ I=1,5000
01000 10 CONTINUE
1050 C CLEAR SCREEN AND RESTORE GRPH FROM ARRAY
01100 CALL CLS
01200 CALL SETXY(110.,110)
01300 CALL PUT(V,ACTION)
01400 DO 20 I=1,5000
1500 20 CONTINUE
01600 END
GPRINT

Write Text Characters to the Graphics Screen

GPRINT is used to write text characters to the Graphics Screen. This is the easiest way to display textual data on the
Graphics Screen. Characters are displayed starting at the current (x,y) coordinates and going in the direction specified
by the most recently executed LOCATE call. If no LOCATE call was executed prior to the GPRINT call, a direction
of 0 is assumed.

GPRINT will only print text characters (see the Model 4 Disk System Owner’s Manual). Each character displayed
in the O or 2 direction uses an 8 x 8 pixel grid; each character displayed in the 1 or 3 direction uses a 16 x 8 grid.
Executing this command will set the current (x,y) coordinates to the end of the last character that was displayed.

74

Graphics Subroutine Library (FORTRAN)

Displaying text in the direction O engages a wraparound feature. If the end of a line is reached, the display will be
continued on the next line. If the end of the screen is reached, the display will be continued at the beginning of the
screen without scrolling. If there is not enough room to display at least one character at the current (x,y) coordinates,
a GRAPHICS ERROR will result. When displaying text in other directions, an attempt to display text outside the
currently defined screen will cause a GRAPHICS ERROR to be given.

GRPINI
Graphics Initialization Routine

GRPINI is the graphics initialization routine. This function must be called before any other graphics calls are made
in FORTRAN.

Example
CALL GRPINI(1)

Sample Program (see CIRCLE)

LINE
Draws Line

LINE draws a line between the previous and current coordinates. These coordinates are set by the SETXY or
SETXYR subroutines.

Example
CALL LINE (1,-1)

75

Model 4 Computer Graphics

Sample Program

This example draws a diagonal line connected to a box, which is connected to a filled box.

Qo010 C SAMPLE FOR LINE LINEB LINEBF
Q0020 LOGICAL COLOR
0030 COLOR=1
20040 CALL GRPINIC(®)
0050 CALL CLS
006D CALL SETXY(1:1)
Q0Q70 CALL SETKY(210,80)
20080 CALL LINE(COLOR:-1)
Q0090 CALL SETKY(420,160)
201900 C COORDINATES ARE NOW (210:80) (420,16@)
20110 CALL LINEB(COLOR:-1)
0120 CALL SETXY(639:+239)
20130 C COORDINATES ARE NOW (420,:160) (639,:,239)
20140 CALL LINEBF(COLOR)
P2150 END
LINEB
Draws Box

LINEB is the same as LINE except LINEB draws a box between the two sets of coordinates set by the SETXY or
SETXYR subroutines.

Example

CALL LINEB(1.,-1)

Line Program (see LINE)

76

Graphics Subroutine Library (FORTRAN)

LINEBF
Draws Painted Box

LINEBF is the same as LINEB except LINEBF fills the box (colors in the box) and the argument style is not used.

Example
CALL LINEBF (1)

Sample Program (see LINE)

LOCATE
Sets the Direction for Displaying Text
on the Graphics Screen

LOCATE sets the direction that GPRINT will use to display textual data. The allowable values for direction are:

0 - zero degree angle
1 - 90 degree angle

2 - 180 degree angle
3 - 270 degree angle

Examples

CALL LOCATE (@)
This program line will cause characters to be displayed at the current (x,y) coordinates in normal left to right
orientation.

CALL LOCATE (1)
This program line will cause characters to be displayed at the current (x,y) coordinates in a vertical orientation going
from the top of the screen to the bottom of the screen.

CALL LOCATE (2)
This program line will cause characters to be displayed upside down starting at the right of the screen and going
towards the left.

77

Model 4 Computer Graphics

CALL LOCATE (3)
This program line will cause the characters to be displayed vertically starting at the lower portion of the screen going
towards the top of the screen.

PAINT
Paints Screen in Specified Color

PAINT paints the screen in the specified OFF/ON color (black or white). It uses the current X- and Y- coordinates
(see SETXY) as its startpoint.

Example
CALL PAINT(1,1)

Sample Program (see CIRCLE)

PAINTT
Paints Screen in Specified Pattern

PAINTT lets you paint a precisely defined pattern using a graphics technique called ‘‘tiling.”” You can paint with
tiling by defining a multi-pixel grid in an array and then using that array as the paint pattern.

Example
CALL PAINTT (As1,V)

78

Graphics Subroutine Library (FORTRAN)

Sample Program

po10@ C EXAMPLE FOR PAINT WITH TILE
00150 LOGICAL AsBsBORDER
0200 DIMENSION A(9)
00300 DIMENSION B(2)
p@350 C DEFINE TILE ARRAY HERE
o400 DATA A(1)y AC2)y A(3) / By X'817y X7d27/
pes500 DATA A(4) yA(S) »A(B) /X247y X187 ,X"18B"/
00600 DATA A(7)sA(B) »A(9) /X247 X 427 ,X'81 7/
po6se C DEFINE BACKGROUND ARRAY HERE
00700 DATA B(1)sB(2)/1,0/
20800 CALL GRPINI(®)
20900 CALL CLS
01000 CALL SETRY(300,100)
01100 CALL CIRCLE(150,1,0.04+0.0,0.,0)
01200 BORDER=1
01300 CALL PAINTT(AsBORDER+B)
01400 END
PRESET

Sets Pixel ON/OFF

PRESET sets the pixel defined by the current (x.y) coordinates either ON or OFF.

Example
CALL PRESET (@)

Sample Program

oo100 C PRESET EXAMPLE

00200 LOGICAL COLOR

o300 COLOR=1

o400 CALL GRPINIC(®)

o500 CALL CLS

00600 C SET PIXEL TO ON

00700 CALL SETXY(300,120)

00800 CALL PRESET(COLOR)

00900 C TEST PIXEL WHETHER ON OR OFF
01000 K=POINT (M)

01100 30 WRITE (3,35)K
01200 35 FORMAT (*27,*PIXEL VALUE IS',I4)
21300 END

79

Model 4 Computer Graphics

PSET
Sets Pixel ON/OFF

PSET sets the pixel defined by the current (x,y) coordinates either ON or OFF.

Example
CALL PSET(Q)

Sample Program

00100 C PSET EXAMPLE

00200 LOGICAL COLOR

00300 LOGICAL POINT

0400 COLOR=1

20500 CALL GRPINI(®)

ey dd CALL CLS

o700 C SET PIXEL TO ON

0800 CALL SETXY(300,12@)

0900 CALL PSET(COLOR)

01000 C TEST PIXEL WHETHER ON OR OFF
21100 K=POINT (M)

01200 WRITE (3:35)K

21300 35 FORMAT (*27*PIXEL VYALUE IS‘,Id)

01400 END

PUT takes a rectangular pixel area that has been stored by GET and puts it on the screen at current x and y
coordinates set by calling SETXY.

80

Graphics Subroutine Library (FORTRAN)

Example
CALL PUT (V,1)

Sample Program (see GET)

SCREEN
Selects Screen

RREIREES e

SCREEN lets you select the proper screen.

Example
CALL SCREEN(®)

Sample Program

This example turns off the graphics display, draws a circle, then turns on the graphics display. The circle is then
visible.

oeo1d C XAMPLE FOR SCREEN
00020 LOGICAL CMD

po0d0 CMD=1

00050 CALL GRPINIC(®)
00060 CALL CLS

Q0070 CALL SCREEN(CMD)
Q080 CALL SETXY(300,120)
20090 CALL CIRCLE(100:+1,+0.0,0.0,0.0)
0100 CALL PAINT(14+1)
00110 DO 20 I=1,10000
2120 20 CONTINUE

20130 CMD=0

00140 CALL SCREEN(CMD)
0150 END

81

Model 4 Computer Graphics

SETXY
Sets Coordinates

SETXY sets and holds both current and previous X- and Y- coordinates. When a new coordinate is given, it is
designated as the ‘‘current coordinate’’ and the last coordinate is designated as the ‘‘previous coordinate.”’ If a new
coordinate is specified, the ‘‘previous coordinate’’ is lost and the ‘‘current coordinate’’ becomes the ‘‘previous
coordinate.’’

Example
CALL SETXY(100,100)

Sample Program (see LINE)

SETXYR
Sets Relative Coordinates

SETXYR sets the current (x,y) coordinates relative to the previously set (x,y) coordinates. For example, if the
“‘current’’ coordinates are (100,100), CALL SETXYR(10,10) will set the ‘‘current’’ coordinates to (110,110); the
‘‘previous’’ coordinates will then be (100,100).

Example
CALL SETRXYR(30:30)

Sample Program

oo01e C DRAW TWO INTERSECTING CIRCLES

00020 CALL GRPINIC(1)

0030 CALL CLS

poaa CALL SETXY(100,100)

20050 CALL CIRCLE(S0+1+2.0+0.0:0.0)

pooce C DRAW SECOND CIRCLE WITH CENTER 20
o007¢ C PIXELS TO THE RIGHT OF FIRST CIRCLE
00080 CALL SETXYR(20:0)

00090 CALL CIRCLE(S50+1+0.2+0.0,0.0)

o100 END

82

Graphics Subroutine Library (FORTRAN)

VIEW
Sets Viewport

VIEW draws viewports on your screen. Graphics is displayed only in the last defined viewport.

The upper-left corner of viewport is read as (0,0) (the ‘‘relative origin’’) when creating items inside the viewport.
All the other coordinates are read relative to this origin. However, the ‘‘absolute coordinates’’ of the viewport, as
they are actually defined on the Graphics Cartesian system, are retained in memory and can be read using VIEW as
a function.

Example
CALL VIEW(100,100,200,:200:0,1)

Sample Program

o100 C SAMPLE VIEW PROGRAM

Q0200 LOGICAL COLORBORDER K

20300 INTEGER FVIEMW

20400 CALL GRPINIC(1)

20500 CALL CLS

oecoe C SET UP VIEW PORT

00700 COLOR=0

o800 BORDER=1

02900 CALL VIEW(210.:80,420,160,COLOR +BORDER)
01000 C DRAW MULTIPLE CIRCLES

01100 CALL SETXY(105.:40)

01200 DO 20 I=10,150,10

21300 CALL CIRCLE(I+»1+0.0:0.0,0)
21400 20 CONTINUE

01500 C DISPLAY VIEWPORT COORDINATES
01600 DO 40 I=1.,4

01700 K=I-1

21800 J=FUIEW(K)

21900 WRITE (3+35)IJ

02000 35 FORMAT (*2’,*VIEW PORT COORDINATE ‘14, IS AT’,I14)
02100 4o CONTINUE
02200 C PRINT EMPTY LINES

83

Model 4 Computer Graphics

02300 DO 6@ I=1.6
02400 WRITE (3:50)
02500 S0 FORMAT (1H1)
02600 GO CONTINUE
02700 END

The following two descriptions are functions in the Graphics Subroutine Library and must be declared as LOGICAL
and INTEGER, respectively, in any routine that uses them.

Functions

POINT
Reads Pixel Value at Current Coordinates

POINT returns the OFF/ON pixel value at current x and y coordinate as specified by SETXY or SETXYR. If the
point is not in the current viewport, POINT returns — 1.

Example
K=POINT (M)

Sample Program (see PSET)

FVIEW
Reads Viewport’s Parameters

FVIEW returns the specified viewport parameter:

0 = returns the left X-coordinate

1 = returns the left Y-coordinate

2 = returns the right X-coordinate

3 = returns the right Y-coordinate
Example

I=FUIEW(®)

Sample Program (see VIEW)

84

Programming the Graphics Board

5/ Programming the Graphics Board

The Graphics Board provides 640 X 240 byte addressable pixels on a TRS-80 Model 4. The Graphics Board
contains 32K of screen RAM to store video data consisting of four 64K RAMs which are double accessed for 8
bytes of data. Regular alphanumeric data is stored in the static RAM on the Video Board. The Graphics Board uses
separate hardware to generate a 640 X 240 display, so only one screen may be displayed at a time. If the video is
switched from Text to Graphics Screen very rapidly, the Video display may lose horizontal/vertical synchronization.

I/O port mapping is used to read and write data to the board. The Board is addressable at 80 — 83 Hex.
There are four internal registers which can be written to or read on the board. They are as follows:

1. X-Position — X-address (0 to 127) for data write only. (0 to 79 for display.)

2. Y-Position — Y-address (0 to 255) for data write only. (0 to 238 for display.)

3. Data — Graphics data in ‘‘byte’” form. Each byte turns on or off 8 consecutive horizontal dots.
4. Options — 8 flags which turn on or off the user programmable options (Write only).

The I/O port mapping of the board is:

@ x0 — X-Register Write. (80)

® x1 — Y-Register Write. (81)

® x2 — Video data read or write. (82)
® x3 — Options write. (83)

where x denotes the upper nibble of the I/O boundary as set by the DIP Switches. They are set by the factory at
80H.

The Graphics Board uses X-Y addressing to locate the start of a Graphics data byte. The upper-left of the screen
is (0,0) while the lower-right is (079,239). If the bit is a 1, the dot will be ON. For example, if you wanted to
turn on the 5th dot on the top row, the registers would contain: X POSITION =0, Y POSITION =0,

DATA = (00001000) =08H. Note that in calculating points to plot, the Y-position is correct for a single dot. Only
the X-position must be corrected to compensate for the byte addressing. This can be accomplished in a simple
subroutine.

Line Drawing Options

There are two 8-bit counters which act as latches for the X- and Y-address. You may select, through the options
register, if they are to automatically count after a read or write to graphic memory. Also, the counters may increment
or decrement independently. These counters do not count to their respective endpoints and reset. Instead, they will
overflow past displayable video addresses. Therefore, the software should not allow the counters to go past 79 and
239. However, these extra memory locations may be used for data storage.

85

Examples

Model 4 Computer Graphics

The following are brief examples on how to use the Graphics Board.

Read the video byte at X=0, Y=0

KOR
ouT
ouT
IN

A

(BOH) »A
(B1H) +A
Ay (B2H)

iCLEAR A

iOUTPUT X ADDRESS
sOUTPUT Y ADDRESS
iREAD VIDEO BYTE

Draw a line from X=0,Y =0 to X=639, Y =0 using the hardware line drawing

LD
LD

ouT
XOR
ouT
ouT
LD
LOOP ouT
DJNZ

No.

B,79
A@B1H

(83H) A
A

(8OH) :A
(B1H) »A
A@FFH
(82ZH) +A
LOOP

iB HAS CHARACTER COUNT
sOPTIONS: INCREMENT X AFTER WRITE
110110001 Binary

s0UT X ADDRESS STARTING
sOUTPUT Y ADDRESS

sLOAD A WITH ALL DOTS ON
sOUTPUT DOTS

sOUTPUT NUMBER IN B REGISTER

Options Programming

Option

GRAPHICS/ALPHA*

NOT USED
XREG DEC/INC*

YREG DEC/INC*

X CLK RD*

Y CLK RD*

X CLK WR*
Y CLK WR*

Description

Turns graphics ON and OFF.
“1” turns graphics ON.

Selects whether X decrements or increments.
“1” selects decrement.

Selects whether Y decrements or increments.
“1” selects decrement.

If address clocking is desired, a “0” clocks the X
address up or down AFTER a Read depending on
the status of BIT 2.

If address clocking is desired, a “0” clocks the Y
address up or down AFTER a Read depending on
the status of BIT 3.

A “0” clocks AFTER a Write.
A “0” clocks AFTER a Write.

Table 9. Options Programming

86

Appendix A/ BASICG/Utilities Reference Summary

Appendix A/BASICG/Utilities
Reference Summary

Argument ranges are indicated below by special letters and words:

ar is a single-precision floating point number > 0.0 (to 1x 10°%).

b is an integer expression of either O or 1.

B specifies a box.

BF specifies a shaded box.

c is an integer expression of 0 or 1.

n is an integer expression from O to 2.

D is an integer expression from 0 to 3.

r is an integer expression from 0 to 639.

x is an integer expression from 0 to 639.

y is an integer expression from 0 to 239.

action is either AND, PSET, PRESET, OR, or XOR.
background is a string of either 0 or 1.

border is an integer expression of either O or 1.

end is an expression from —6.283185 to 6.283185.
start f029is an expression from —6.283185 to 6.283185.
switch is an integer expression of 0 or 1.

tiling is a string or an integer expression of 0 or 1.
type is an integer expression of 0 or 1.

CIRCLE(x,y)r,c,start,end,ar Draws a circle, ellipse, semicircle, arc, or point.

CIRCLE(100,100) 4251 CIRCLE(15@+150) 403144448
CIRCLE(10®4+100) »10@ P11 2%PI,5 CIRCLE(-50:-50) ,200

CLS Clears the Text Screen and video memory.
CLS SYSTEM"CLS"

CLR Clears the Graphics Screen.
CLR

GCLS Clears the Graphics Screen and memory.
GCLS SYSTEM"GCLS" 10® SYSTEM"GCLS"

GET(x1,y1)-(x2,y2),array name Reads the contents of a rectangular pixel area into an array.
GET(1@,1@)-(50:50) sV

GLOAD filename/ext.password:d 1Loads graphics memory.
GLOAD PROG SYSTEM"GLOAD PROG"

GLOCATE (x,y),direction Sets the Graphics Cursor
GLOCATE (3204+120) 40

87

Model 4 Computer Graphics

GPRINT Dumps graphic display on the printer.
GPRINT SYSTEM"GPRINT" 100 SYSTEM"GPRINT

GPRT2 Dumps graphic display on the printer without rotating 90 degrees.
GPRTZ SYSTEM"GPRTZ2" 100 SYSTEM"GPRTZ"

GPRT3 Dumps graphics display on the printer without rotating 90 degrees.
GPRT3 © SYSTEM"GPRT3" 19@ SYSTEM"GPRT3"

GROFF Turns Graphics Display OFF.
GROFF SYSTEM"GROFF"

GRON Turns Graphics Display ON.
GRON SYSTEM"GRON"

GSAVE filename/ext.password:d Saves graphics memory.
GSAVE PROG SYSTEM"GSAVE PROG"

LINE(x1,yl)-(x2,y2),c,B or BF, style Draws a line/box.
LINE -(100,100) LINE(1Q@,100)-(200,200) +1,B,45
LINE(@@)-(100,100) 1 ,BF LINE(-Z200,+-200)-(100,100)

PAINT (x,y),tiling,border,background Paints the screen.
PAINT(320+120) +1+1 PAINT(3Z20,120),"DDDDD" »1
PAINT(320,120) A% 1
PAINT(320+120) yCHR$ (D) +CHR$ (&HFF) +@CHR$ (8HO @)
PAINT(3204+120) yCHR$(E)+CHR$(77)+CHR$(3)

&POINT(x,y) A function. Tests graphics point.
PRINT &POINT(320,120) IF BPOINT(3Z20,120)=1)THEN...
PRINT &POINT(3Z20,120) -1

PRESET (x,y),switch Sets pixel OFF or ON.
PRESET(100,100) 0

PRINT #-3, item list Write text characters to the Graphics Screen.
PRINT #-3"MONTHLY"

PSET (x,y),switch Sets pixel ON or OFF.
PSET(100,100) +1

PUT (x1,yl),array name,action Puts graphics from an array onto the screen.
PUT(100,10@) sA+PSET PUT(10@,100) +A+AND
PUT(A:B) 4B

SCREEN type Selects the screen.
SCREEN @

VIEW (x1,y1)-(x2,y2),c,b Redefines the screen and creates a viewport.
VIEW(100,100)-(150,+150) VIEW(100:100)-(150:150) +0+1

&VIEW(p) A function. Returns viewport’s coordinates.
PRINT &UVIEW(1)

88

Appendix B/ BASICG Error Codes and Messages

Appendix B/ BASIC Error Codes
and Messages

Code Number Message

NF 1 NEXT without FOR

A variable in a NEXT statement does not correspond to any previously
executed, unmatched FOR statement variable.

RG 3 Return without GOSUB
BASIC encountered a RETURN statement for which there is no
matching GOSUB statement.

FC 5 llegal function call
A parameter that is out of range was passed to a math or string
function. An FC error may also occur as the result of:
a. A negative or unreasonably large subscript.
b. A negative or zero argument with LOG.
c. A negative argument to SQU.
d. A negative mantissa with a noninteger exponent.

e. A call to a USR function for which the starting address has not yet
been given.

f. An improper argument to MID$, LEFT$, RIGHT$, PEEK, POKE,
TAB, SPC, STRINGS$, SPACES$, INSTR, or ON...GOTO.

89

Model 4 Computer Graphics

oM 7 Out of memory

A program is too large, or has too many FOR loops or GOSUBs, too
many variables, or expressions that are too complicated.

BS 9 Subscript out of range

An array element was referenced either with a subscript that is outside
the dimensions of the array, or with the wrong number of subscripts.

/0 11 Division by zero

An expression includes division by zero, or the operation of involution
results in zero being raised to a negative power. BASIC supplies
machine infinity with the sign of the numerator as the result of the
division, or it supplies positive machine infinity as the result of the
involution. Execution then continues.

™ 13 Type mismatch

A string variable name was assigned a numeric value or vice versa. A
numeric function was given a string argument or vice versa.

LS 15 String too long

An attempt was made to create a string more than 255 characters long.

90

Appendix B/ BASICG Error Codes and Messages

CN 17 Can’t continue
An attempt was made to continue a program that:
a. Has halted due to an error.

b. Has been modified during a break in execution.

c. Does not exist.

19 No RESUME

An error-handling routine was entered without a matching RESUME
statement.

21 Undefined error

An error message is not available for the error that occurred.

. . . ;
23 Line buffer overflow.

An attempt was made to input a line with too many characters.

Disk Errors
50 Field overflow

A FIELD statement is attempting to allocate more bytes than were
specified for the record length of a direct-access file.

91

Model 4 Computer Graphics

52 Bad file number

A statement or command references a file with a buffer number that is
not OPEN or is out of the range of file numbers specified at
initialization.

54 Bad file mode

An attempt was made to use PUT, GET, or LOF with a sequential file,
to LOAD a direct file, or to execute an OPEN statement with a file
mode other than |, O, R, E or D.

57 Device /O error

An Input/Output error occurred. This is a fatal error; the operating
system cannot recover it.

61 Disk full

All disk storage space is in use.

63 Bad record number

In a PUT or GET statement, the record number is either greater than
the maximum allowed (65,535) or equal to zero.

92

Appendix B/ BASICG Error Codes and Messages

66 Direct statement in file

A direct statement was encountered while LOADing an ASCI|-format
file. The LOAD is terminated.

93

—— Appendix C/ Subroutine Language Reference Summary

Appendix C/ Subroutine Language
Reference Summary

CIRCLE (radius, color,start,end,ar) Draws circle, ellipse, semicircle, arc, or point. (x,y) coordinates set by
SETXY.
CALL CIRCLE (100:1+0,0,0)

CLS Clears Screen.
CALL CLS(2)

FVIEW (n) Returns viewport parameter.
I=FUIEW(®)

GET (array,size) Reads the contents of a rectangular pixel area into an array for future use by PUT.
CALL GET(A:4000)

GPRINT (size,array) Displays textual data.
CALL GPRINT (28,ARRAY1)

GRPINI (option) Graphics initialization routine.
CALL GRPINI(®)

LINE (color,style) Draws a line.
Coordinates set by SETXY or SETXYR.
CALL LINE (1:-1)

LINEB (color,style) Draws a box.
Coordinates set by SETXY or SETXYR.
CALL LINEB (1,-1)

LINEBF (color) Draws a filled box.
Coordinates set by SETXY or SETXYR.
CALL LINEBF (1)

LOCATE (n) Sets the direction for displaying textual data.
CALL LBCATE

PAINT (color,border) Paints screen.
CALL PAINT(141)

PAINTT (arrayT,border,arrayS) Paints screen with defined paint style.
CALL PAINTT (A1)

POINT Returns pixel value at current coordinates.
K=POINT(M)

PRESET (color) Sets pixel ON or OFF.
CALL PRESET (@)

PSET (color) Sets pixel ON or OFF.
CALL PSET (@)

95

Model 4 Computer Graphics

SCREEN (#ype) Sets Screen/graphics speed.
CALL SCREEN (1)

SETXY (X,Y) Sets coordinates (absolute).
CALL SETXY(100,100)

SETXYR(X,Y) Sets coordinates (relative).
CALL SETXYR(50:50)

VIEW (leftX,leftY ,rightX,rightY ,color,border) Sets viewport.
CALL VIEW(100,100,200,2004+01)

96

Appendix D/ Sample Programs

Appendix D/ Sample Programs

1¢

20 ' Pie Grarh Prodram ("PECANPIE/GRA")

30 7

4¢ ' Obdect

30 7 The obJdect of this prodram is to draw a pie dgrarh of the

6o ' expenses for a given month of eidght derpartments of a companvy s
79 alond with the numerical value of each pPie section

80 ' representation.

9@

100

11 ' Runnindg the prodram

12e 7 The month and the amounts spent by each derpartment are input:
13 7 and the pProdram takes over from there,

14 7

150 ' Srecial features

169 The amounts spent by each account as well as the total

179 7 amount spent are stored in strinds. The Program will

189 standardize each string so that it is 9 characters longd

190 7 and includes two characters to the ridht of the decimal

200 7 POINt. This allows for input of variable lendgth and an

210 7 optional decimal Point.

220

230 The various coordinates used in the pProdram are found

240 7 based on the following equations:

250

260 ' X = r ¥ cos(theta)

270 y = r % sin(theta)

280

290 7 where x and v are the coordinatess r is the radiuss and theta
300 is the angle. (Note: The v-coordinates are alwavs multiplied
310 ' by ©.5, This is because the v Pixels are twice the size of the
320 7 X Pixels.,)

330

340 7 If an angle theta is denerated by a percent less than 1% the
350 7 section is not grarhed, and the next theta is calculated,

360 7 Howevers the number will still be listed under the Kev.

370

380 ' Variables

390 ACCT# (1) Descrirption of the account

409 ' BUD$ (1) Amount spent by the account

410 7 DS5¢% Dollar sidgn (used in output)

420 RCOL Column number for the Pie section number

430 HYRW Row number for the Pie section number

449 7 I Counter

97

450
469
a7
480
499
S00
S10
520
530
sS40
550
560
570
580
590
600
610
G20
630
640
650
66@
670
680
690
700
710
720
7490
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
g00
910
920
930
940

Model 4 Computer Graphics

MN$ Month
PER (i) Percent value of BUD$(i)
R Radius of circle
TO Andle value line to be drawn
T1 Angle value of the next line
TBUD% Total of all the BUD%$(i)’s
THALF Andle halfway between T1 and T® (used for
location position for section number)
TILE$(i) Paint stvle for each section
! TWOPI Two times the value of Pi
‘ no ¥-coordinate for drawing the line represented
! by T@
! b ¥-coordinate for Paintingd a section
! Y@ Y-coordinate for drawing the line rerpresented
! by T@
! YP Y-coordinate for Ppainting a section
‘ Set initial values
CLEAR 1000 ‘1@-JAN-8B4

DIM THALF(15),BUD$(15) ACCT$(15) +PER(1GB)

TWOPI=2%3.,141589

R=18¢

DS$="4%"

ACCT$(1) = "Sales"
ACCT4(2) = "Purchasing"
ACCT$(3) = "R&D "
ACCT$(4) = "Accounting"
ACCT$(5) = "Advertising "
ACCT$(B) = "Utilities "
ACCT$(7) = "Security "
ACCT4(8) = "Expansion"
TILE$(@)=CHR$(&HZZ2)+CHR% (&HD)

TILE$(1)=CHR%(&HFF)+CHR% (&HQ)
TILE$(2)=CHR$(&H99)+CHR% (&HEGE)

TILE$(3)=CHR%$ (&H89)

TILE$(4)=CHR& (&HFF)
TILE$(5)=CHR$ (&HF@)+CHR$ (&HF @) +CHR$ (&HF) +CHR$ (&HF)
TILE$(B)=CHR$ (&H3C)+CHR$ (H3C)+CHR% (&HFF)
TILE$(7)=CHR$ (&H3)+CHR$ (&HC)+CHR$ (&H3@) +CHR$ (&HCO)

’ Enter values to be dgrapheds standardize thems and
‘" the percent thev represent

CLR

CLS

SCREEN 1

PRINT @B@®+"Enter month "

PRINT @240 :"Enter amount spent by"

calculate

98

950

960

970

98¢0

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
109¢@
1100
1110
1120
1130
1140
1150
116@
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1380
1400
1410
1420

PRINT @320:"%"
PRINT @@ ,""

LINE INPUT "Enter month "3iMN%$

FOrR I=1 TO 8
PRINT B2B5+ACCTS(
PRINT B320.,"$"

PRINT @24@.,""

Iys"

LINE INPUT "$"3iBUD&(I)
+" ") =0 THEN BUD$(I)=BUD&(I)+".00"
IF LEN(BUD$(I))<9 THEN BUD%$(I)="
TBUD®=STR$ (VAL(TBUD%)+VAL(BUD$(I)))

IF INSTR(BUD$(I)

NEXT I

Appendix D/ Sample Programs

"+BUD$(I):GOTO 1040

IF INSTR(TBUD%$,".")=@¢ THEN TBUD®=TBUD$+".,0Q00"
IF LEN(TBUD$)<9 THEN TBUD%="

FOrR I=1 TO 8

"+TBUD$:GOTO 1080

PER(I)=UAL(BUD$(I))/VAL(TBUD%)*100

NEXT I
SCREEN @

¢
7
7

7

CIRCLE(4Z234+120) sR

FOR I=0¢ TO 8

TO=TWOPI/100*PER(I)=T®

HKO=425+R*COS(T®)

YO=1Z20-R*SIN(T@)*.5
T1=TWOPI/1@0*PER(I+1)+T0

THALF(I)=(T@+T1)

/2

Draw the circle and calculate the location of the lines and
the line numbers

HAXCOL=(425+R*1,15%COS(THALF(I)))-10
HYRW=INT(120-R*1,15*SIN(THALF(I))*.3)

IF PER(I)*1 THEN LINE

GLOCATE (HXCOL sHYRW) +2
IF 1<8 and PER(I+1)*1 THEN PRINT #-3,I+1

NEXT 1

7

s

FOrR I=0 TO 7

HKP=425+R*,5#COS(THALF(I)
¥YP=1Z0-R*,3*S5IN(THALF(I))*.5
IF PER(I+1)<=1 THEN 1380
PAINT (XPsYP)sTILE$(I) »1

NEXT I

7

" Print the Kevy

7

GLOCATE(@ +10) 40

for the drarh

(425 4120) - (X@ YD)

Paint the appropriate sections of the pPie

99

1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1649

Model 4 Computer Graphics

PRINT #-3,"ExPenditures for"
GLOCATE(®:25) 10

PRINT #-3,MN$
GLOCATE(®,40) 0

PRINT #-3,"# Descrirtion Amount"
FOR I=1 TO B
GLOCATE(@(4+1)%13) 40

PRINT #-3,1

GLOCATE(4@ +(4+1)*13) »0

PRINT #-3,ACCT$(I)
GLOCATE(13@,(I+4)%15),0
PRINT #-3,DS54%3iBUD%(I)

DS¢=" "

NEXT I

GLOCATE(®,195) 0

PRINT #-33STRING$(26:"-")
GLOCATE(4@,210) »0

PRINT #-3,"Total "3TBUD%
FOR I=1 TO 10000

NEXT I

SCREEN 1

END

100

10

20

30

40

50

60

70

=1

90

100
110
120
130
140
150
160
170
180
190
200
210
230
240
250
260
270
280
290
300
310
320
330
340
350
36@
370
380
390
a00
419
420
430
449
450
460
470
480

Appendix D/ Sample Programs

"THREEDEE/GRA"

Obdect

The obJect of this prodram is to Produce a three
dimensional bar drarh representation of the dross
income for a compPany over a one vear period,

Yariables

A Vertical alphanumeric character
! BMSCG% Bottom messade
‘ CHARS$ Disk file inPut field

! GI$ Gross income

! I Counter

! J Counter

! MN%$ Month

! REC Record number of vertical character
! Si% Single character of vertical messade
! TILE® Tile pattern for Painting

! TTINC Total income for the vear

‘ " A-coordinate of bar
! V(i) Y-coordinate of bar
I

‘InPut/outpPut

! The prodram Prompts vou to enter the dross incomes in
‘for each month, The Prodram requires these values to be
‘and nine,

‘Set initial values

CLS

DIM Y(12)+A(8) +MN$(12)

DEFINT A

UMEG$=" Millions of dollars "

TMEG$="CG r 0o s s I nmncome For 189823"
BMSG%="M o n t h"

MN$(1)="January"

MN$(2)="Februarv"

MN%(3)="March"

MN$(4)="April"

MN&(S)="May"

MN&(B)="June"

MN$(7)="Jduly"

MN%(B8)="Audust"

MN%(9)="September"

MN$(1@)="0ctober"

MN$(11)="November"

MN$(12)="December"

TILE$=CHR$ (&H99)+CHR%$ (&HBBG)

millions:

between

one

101

499
500
510
520
530
5490
550
560
370
580
390
600
6190
620
630
640
650
662
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960

Model 4 Computer Graphics

{=-10

7

~

‘ InPut dross incomes and calculate the Y-coordinate

FOR I=1 TO 12

CLS

PRINT "Enter dross income in millions (1-9) for "SMN$%(I)
LINE INPUT "$"35GI%

Y(I)=205-20*VAL(GI$)

TTINC=TTINC+VAL(GI%)

NEXT I

CLR

SCREEN @

‘" Draw the drarph and bars

FOR I=1 TO 12

CLS

K=K+50

LINE (XY (I))-(XK+20,2035) +1+BF
LINE -(X+4@,195)

LINE -(X+4@,¥(I1)-10)

LINE -(X+20,¥(I)-12)

LINE -(Xs¥(I))

LINE (K420 (1)) -(R+4D ¥ (1)-10)
PAINT(X+21 Y (I)+2) +TILE$»1
NEXT I

GLOCATE(4@:215) ,0

PRINT #-3,"Jan Feb Mar Arr May June July Aug Sert

GLOCATE(290,230) 0

PRINT #-3,BMSG%$

FOR I=1 T0 1@

IF I1>9 THEN C=1 ELSE C=2
GLOCATE((C*10)-S(20-1%2)%10) :0
PRINT #-3,STR$(I)3i"-"

NEXT 1

LINE (35:0)-(35,205)

LINE -(B39:203)
GLOCATE(2+18@) »3

PRINT #-3,UMSG%
GLOCATE(ZZ20:0) +0

PRINT #-3,TMSG%$
GLOCATE(Z2GD,10) ,0

PRINT #-3,"(Total income is"3STTINC:" million)"
FOR I=1 TO 10000

NEXT 1

SCREEN 1

END

Oct

Now

102

Appendix D/ Sample Programs

Printing Graphics Displays

There are many ways to use the stand-alone utilities (described in Graphic Ultilities). The following discussion
demonstrates one way to use the utilities with graphic displays generated under BASICG.

To print graphics, follow these steps:

1. When TRSDOS Ready appears, set FORMS to allow 255 characters per line and 60 lines per page. (See your
Model 4 Disk System Owner’s Manual.)
2. Set the printer into Graphic Mode, if possible, and set the printer’s other parameters (elongation, non-elongated,
etc.), if applicable, according to instructions in your printer owner’s manual.
3. Write, run and save your program as a BASICG program file.
4. Save the graphics memory to diskette using GSAVE.
5. Load the file into memory using GLOAD.
6. Enter the print command GPRINT.
Example
1. Set FORMS with your printer’s printing parameters.
2. Load BASICG and type in this program:
5 SCREEN @
19 DEFDBL Y
20 CLR
30 LINE (2:120)-(B40+120)
49 LINE (320:0)-(320:240)
50 FOR X=0 TO G40
B® PI=3,141259
70 K1=X/GA40*Z2%PI-PI
B0 Y=8IN(X1)*100
90 IF Y>10@ THEN X=X+7
10® PSET (X:-Y+120)
119 NEXT X
120 GLOCATE(®:0) 40
13@ PRINT #-3, "THIS IS A SINE WAVE."
3. RUN the program.
The program draws a sine wave on the Graphics Screen (graphics memory) and prints the statement in line 130
(““THIS IS A SINE WAVE.”") on the Graphics Screen.
4. SINE (for sine wave) is the name we are giving this TRSDOS file. To save the contents of the graphics memory
(which now includes the converted video memory) to diskette, type: SYSTEM"GSAVE SINE" (ENTER.
5. The graphics memory is saved as a TRSDOS file on your diskette.
6. Exit BASIC by typing: SYSTEM (ENTER

103

Model 4 Computer Graphics

7. Type: GCLS
The graphics memory is now cleared.
8. To load the file back into memory, type:
GLOAD SINE
The display is now on the Graphics Screen.

9. To print, type: GPRINT (ENTER).

FORTRAN Sample Programs

golgg C HIGH RESOLUTION GRAPHICS TEST - MAIN PROGRAM
gg28g C

go3gg CALL GRPINI(f)
pgo4pg CALL SCREEN(#)
ggspgg C

goegg C CIRCLE TEST
gg799 C

gogsgp CALL CTEST
ggogp C

glggg cC LINE TEST

g11pg C

g12099 CALL LTEST
g13gg C

glr4gg C LINEB TEST
gisgg C

pglegg CALL LBTST
g17g8 C

glsgg cC LINEBF TEST
g19g99 C

g2009 CALL LBFTST
g21gg C

g2299 C PAINTT TEST
p2399 C

g24g99 CALL PTTTST
g2s549 Cc

g26g8 C GET AND PUT TEST
2799 C

g28g9 CALL GPTST
g2998 C A
g3ggg C PSET/POINT TEST
g31gg C

#3209 CALL PPTST
g3399 C

g34gg C PRESET/POINT TEST
35909 C

g36gg CALL PRETST
g3798 C

104

Appendix D/ Sample Programs

g38gg C SCREEN TEST
g399g C

gaggg CALL SCRTST
ga1gg C

ga299 C VIEW/FVIEW TEST
g4a3gg C

gaagg CALL VTEST
gasgg CALL CLS(2)

gaegg END

105

go199
gg2p9
ga389
ggapp
ga589
ggegg
go1g¢
gosgg
[y LY 1]
g1o99
g119g¢
#1209
91398
1499
g1509
glegg
91790
g18g@
#1999
g20090
g2199
g2209
g2309
g2499
g2509
g2609
92709
g2809
g29gg
g3ggg
#3199
93209
#3389
g34g9
#3509
g360g
#3789
93849
23909
gagpg
g4a199
gazgg

SUBROUTINE CTEST

(eXeKe!

LOGICAL MSG(29)
CALL CLS
ENCODE(MSG,1¢4)

Model 4 Computer Graphics

THIS SUBROUTINE TESTS CIRCLE,

SETXY, AND PAINT

199 FORMAT('TEST CIRCLE, SETXY, AND PAINT')

CALL SETXY(#,8)
CALL LOCATE(f)

CALL GPRINT(29,MSG)
CALL WAIT

CALL VIEW(@,39,639,239,4,8)

DO lﬂ I=lrl¢ﬂ
IX=MOD(I*17,640)
IY=MOD(I*13,210)
IR=I*1.5
START=MOD(I,13)-6.0
END=MOD(I*3,13)-6.0

IF (START.LT.END) GOTO 1

T=START
START=END
END=T
1 CONTINUE
RATIO=MOD(I*3,18d)

IF (RATIO.GT.#) RATIO=RATIO/4M.

CALL SETXY(IX,IY)

CALL CIRCLE(IR,1,START,END,RATIO)

g CONTINUE

(o O NP Ny

DO 11 I=1,54

IX=MOD(I*23,644)

IY=MOD(I*11,214)

CALL SETXY(IX,IY)

CALL PAINT(1,1)
11 .CONTINUE

CALL WAIT

CALL VIEW(gIﬂl6391239,-1'-1)

RETURN
END

RANDOMLY FILL IN THE AREAS

106

Appendix D/ Sample Programs

gg1gg SUBROUTINE LTEST
gg2gg C

gg3gg C THIS ROUTINE EXERCISES LINE
ggagg C

ggsgg LOGICAL MSG(19)

ggegg CALL CLS(g)

ga789 ENCODE(MSG,104)

ggsgg 149 FORMAT('LINE AND PAINT TEST')
googg CALL SETXY(#,8)

pg1ogg CALL LOCATE(f)

g1199 CALL GPRINT(19,MSG)

g12099 CALL WAIT

g139¢ J=10¢

g1599 CALL SETXY(I,15)

glegg CALL SETXY(I,239)

#1799 CALL LINE(1,J)

#1899 J=J-1

g19gg 19 CONTINUE

g2gp99 CALL WAIT

g2199 CALL VIEW(@,15,639,239,4,8)
g220990 CALL CLS

@239 C

g24g99 C DRAW WHITE LINES AND FILL IN RANDOMLY
g25088 C

g26090 IX=MOD(I*19,639)

g2799 IY=MOD(I*17,223)

g28pg CALL SETXY(IX,IY)

#2999 DO 11 I=1,1¢0

g3ggg IX=MOD(I*23,639)

@319 IY=MOD(I*29,223)

g32090 CALL SETXY(IX,IY)

#3389 CALL LINE(1l,-1)

@3499 11 CONTINUE

#3509 DO 12 I=1,50

g369g IX=MOD(I*31,639)

#3799 IY=MOD(I*37,223)

g38g¢g CALL SETXY(IX,IY)

#3999 CALL PAINT(1,1)

gagag 12 CONTINUE

pg4199 CALL WAIT

4200 C

#43gg C WHITE OUT SCREEN, DRAW BLACK LINES, PAINT BLACK RANDOMLY
gaagg C

#4509 CALL VIEW(#,15,639,239,1,1)
gaegg DO 15 I=1,10¢

ga799 IX=MOD(I*11,639)

gasgg IY=MOD(I*13,223)

#4999 CALL SETXY(IX,IY)

gspgg CALL LINE(f#,-1)

g51gg 15 CONTINUE

gs52089 DO 16 I=1,58

#5399 IX=MOD(I*17,639)

107

Model 4 Computer Graphics

gs499 IY=MOD(I*19,223)

gssgg CALL SETXY(IX,IY)

gsegg CALL PAINT(g,8)

gs798 16 CONTINUE

gs89g CALL WAIT

#5904 CALL VIEW(@,9,639,239,6,8)
gegag RETURN

ge1gg END

108

go1gg
gg2p9
pgg3gg
ggapg
gosgg
ggegg
ge709
gosgg
ggoge
glgpgp
g1199
#1209
#1399
g14g9
g1sgg
glegg
g1799
g18gg
91999
g2099
g2109
g22g¢9
g2399
g2499
g2s5gg9

[eXeNKe]

149

19

Appendix D/ Sample Programs

SUBROUTINE LBFTST
LINEBF TEST

LOGICAL MSG(1ll)

CALL CLS

ENCODE (MSG, 188)
FORMAT('LINEBF TEST')
CALL SETXY(#,8)

CALL LOCATE(f)

CALL GPRINT(11,MSG)
CALL WAIT

IXP=639

ICLR=1

DO 1¢ IX=g4,128

CALL SETXY (IX*2,IX+3f0)
CALL SETXY (IXP,IXP-4gg)
CALL LINEBF(ICLR)
IXP=IXP-3

ICLR=ICLR-1

IF (ICLR.LT.#) ICLR=1
CONTINUE

CALL WAIT

RETURN

END

109

Model 4 Computer Graphics

gp19@ SUBROUTINE PTTTST

gp208 C

pa309 C PAINT WITH TILES TEST

gpagg C

gasgg LOGICAL A(65),B(4),IS(16),MSG(23)

gpegg DATA A(1)/8/

go1p9 C X

goasgg DATA A(2),A(3),A(4),A(5)/X"41"',X"'22"',X'14"',X'g8"'/
ggogg DATA A(6),A(7),A(8),A(9)/X'14"',X"22"',X"41"' ,X'@g@"'/
#1900 C FINE HORIZONTAL LINES

#1199 DATA A(1¢),A(11),A(12)/2,X'FF',X'@g@g'/

#1208 c MEDIUM HORIZONTAL LINES

#1399 DATA A(13)/4/

#1499 DATA A(14),A(15),A(16),A(17)/X'FF',X'FF',X'@g@g"',X'g@g*'/
#1599 C DIAGONAL LINES

glegg DATA A(18)/4/

#1794 DATA A(19),A(20),A(21),A(22)/X'#3',X'@gC',X"'3¢"',X'cg'/
glsgg C LEFT TO RIGHT DIAGONALS

#1999 DATA A(23)/4/

#2090 DATA A(24),A(25),A(26),A(27)/X'Cg',X"'38"',X'@C',X*'@g3'/
#2194 c FINE VERTICAL LINES

g2289 DATA A(28),A(29)/1,X'AA'/

#2309 C MEDIUM VERTICAL LINES

#2499 DATA A(3¢),A(31)/1,X'CC'/

#2509 C COARSE VERTICAL LINES

#2608 DATA A(32),A(33)/1,X'Fg'/

#2794 C ONE PIXEL DOTS

g28g04g DATA A(34),A(35),A(36)/2,X'22',X'g@g'/

#2994 c TWO PIXEL DOTS

g3p09 DATA A(37),A(38),A(39)/2,X'99"',X'66"'/

#3199 C PLUSES

#3209 DATA A(49),A(41),A(42),A(43)/3,X'3C',X'3C',X'FF'/
#3399 c SOLID

g34g9 DATA A(44),A(45)/1,X'FF'/

#3509 C BROAD CROSS HATCH

#3608 DATA A(46),A(47),A(48),A(49)/3,X'92',X'92"' ,X'FF'/
#3788 C THICK CROSS HATCH

g38gg DATA A(58)/4/

#3994 DATA A(51),A(52),A(53),A(54)/X'FF',X'FF',X'DB',X'DB'/
gagog C FINE CROSS HATCH

ga199 DATA A(54),A(55),A(56)/2,X'92' ,X'FF'/

#4200 C ALTERNATING PIXELS

ga3gg DATA A(57),A(58),A(59)/2,X'55',X'AA"/

gaagg DATA B(l1),B(2),B(3),B(4)/1,8,1,X'FF'/

gasgg DATA IS(1),IS(2),IS(3),Is(4),1Is(5),1Is(6)/1,194,13,18,23,28/
ga608 DATA IS(7),IS(8),IS(9),IS(14),IS(11)/36,32,34,37,48/
ﬂ47¢g DATA IS(12),IS(13),IS(14),1IS(15),IS(16)/44,46,58,54,57/
ga8g CALL CLS

gaogg ENCODE(MSG,188)

gs0099 199 FORMAT('PAINTT AND SETXYR TESTS')

#5199 CALL SETXY(#,0)

#5204 CALL LOCATE(f#)

g5399 CALL GPRINT(23,MSG)

110

Appendix D/ Sample Programs

gs4gg CALL WAIT

gs5588 C

gse6gg C PAINT ON A BLACK BACKGROUND
95788 C

258409 DO 1¢ I=1,16

#5909 CALL SETXY(#,48)

geggg CALL SETXYR(639,199)

gel1gg CALL LINEB(1,-1)

g6299 CALL SETXYR(-3¢¢,-188)
ge3gg ITMP=IS(I)

geagg CALL PAINTT(A(ITMP),1,B)
g6509 CALL WAIT

#6609 CALL VIEW(@,40,639,239,8,8)
#6788 CALL VIEW(g,#,639,239,-1,-1)
gesgg 1g CONTINUE

ge69gg C

g7g88 C PAINT ON A WHITE BACKGROUND
#7198 C

#7209 DO 11 I=1,16

#7389 IF(I.EQ.12) GOTO 11

g749¢ CALL VIEW(@,40,639,239,4,9)
#7599 CALL VIEW(f,#,639,239,-1,-1)
g76948 CALL SETXY(#,49)

#7789 CALL SETXYR(639,199)

g7890 CALL LINEBF(1)

g7999 CALL SETXYR(-3¢g,-199)
gsggg ITMP=IS(I)

#8199 CALL PAINTT(A(ITMP),8,B(3))
g82gg CALL WAIT

g830g 11 CONTINUE

g84agg RETURN

g8s99 END

111

Model 4 Computer Graphics

gg1gp SUBROUTINE GPTST

gg2pg C

gg3gg C GET AND PUT TEST

ggagg C

gospg LOGICAL A(1g9@),MSG(16)
ggegg CALL CLS

gg799 ENCODE (MSG,108)

gosgg 199 FORMAT('GET AND PUT TEST')
paogg CALL SETXY(g,8)

grogg CALL LOCATE(f)

g11p9 CALL GPRINT(16,MSG)

#1209 CALL VIEW(@,30,639,239,4,0)
#1349 CALL SETXY(140,109)

gl4gg CALL SETXYR(3#,30)

g1599 CALL LINEBF(1)

glegg CALL GET(A,1009)

#1799 CALL CLS

gl18gg CALL WAIT

#1999 CALL SETXY(14¢,109)

g2o09 CALL PUT(A,l)

#2199 CALL WAIT

#2209 CALL VIEW(@,#,639,239,0,-1)
g2399 RETURN

g24g9 END

112

Appendix D/ Sample Programs

ga1gg SUBROUTINE PPTST

gg209 C

pg3gg C PSET AND POINT TEST
ggapg C

pgsgg LOGICAL POINT,MSG(2l1)
poepg CALL CLS

pg799 ENCODE (MSG,108)

pgsgg 149 FORMAT('PSET AND POINT TEST')
gaogg CALL SETXY(#,0)

[.38].)] CALL LOCATE(g)

g1199 CALL GPRINT(19,MSG)
p1294 CALL WAIT

#1399 CALL CLS

#1494 C

pg1s99 C SET AND CHECK ALL PIXELS
glegg C

p1799 DO 19 I=0,639

pg18gg DO 11 J=#,239

g19gg CALL SETXY(I,J)

g2099 CALL PSET(1)

#2109 K=POINT(L)

#2204 IF(K.EQ.f#) GOTO 999
g2399 11 CONTINUE

g2499 19 CONTINUE

ga2sgg C

p2609 C RESET AND CHECK ALL PIXELS
#2799 C

#2804 DO 12 I=64,639

g29g9 DO 13 J=@,239

g39g9 CALL SETXY(I,J)

#3199 CALL PSET(g)

p3209 K=POINT(L)

#3399 IF (K.EQ.1l) GOTO 999
#3499 13 CONTINUE

#3508 12 CONTINUE

g36gg CALL CLS

#3794 ENCODE(MSG,101)

p3899 191 FORMAT('PSET AND POINT PASSED')
#3999 CALL SETXY(@,8)

gapggg CALL LOCATE(@)

ga1g9 CALL GPRINT(21,MSG)
ga29g GOTO 1@@@

ga3gg 999 CALL CLS

gaagg ENCODE(MSG,182)

gasgg 192 FORMAT('PSET AND POINT FAILED')
gaeggy CALL SETXY(@,8)

#4749 CALL LOCATE(f#)

gasgg CALL GPRINT(21,MSG)
#4999 1999 CALL WAIT

gsggg RETURN

#5199 END

113

21080
29200
L EL)]
LRV]
'IEY)]
pgg60Q
8780
Ve
28999
g1099
g1198
91208
21308
p14990
#1509
glepp
81788
p180g
91999
820089
82100
g2209
92309
p24p0
g2509
g2609
p2788
#2809
g2909
30089
#3109
832090
#3309
#3499
#3509
g3600
93709
93809
#3909
g4p990
p4199
g4a20p
g4a3pg
g4a4p0g
g4500
pga6g90
B470890
s48090
849990
95008
#5199

[eXeKe!

199

eXoKe!

13
12

191

999

192

1999

Model 4 Computer Graphics

SUBROUTINE PRETST
PRESET AND POINT TEST

LOGICAL POINT,MSG(23)

CALL CLS

ENCODE (MSG, 1080)

FORMAT('PRESET AND POINT TEST')
CALL SETXY(#,8)

CALL LOCATE(f)

CALL GPRINT(23,MSG)

CALL WAIT

CALL CLS

SET AND CHECK ALL PIXELS

DO 11 J=#,239

CALL SETXY(I,J)
CALL PRESET(1)
K=POINT(L)
IF(K.EQ.f#) GOTO 999
CONTINUE

CONTINUE

RESET AND CHECK ALL PIXELS

DO 12 I=#,639

DO 13 J=#,239

CALL SETXY(I,J)

CALL PRESET(f)
K=POINT(L)

IF (K.EQ.1l) GOTO 999
CONTINUE

CONTINUE

CALL CLS
ENCODE(MSG, 101)
FORMAT ('PRESET AND POINT PASSED')
CALL SETXY(d,8)

CALL LOCATE(f)

CALL GPRINT(23,MSG)
GOTO 1999

CALL CLS
ENCODE(MSG,182)
FORMAT ('PRESET AND POINT FAILED')
CALL SETXY(d,8)

CALL LOCATE(f)

CALL GPRINT(23,MSG)
CALL WAIT

RETURN

END

114

eXoKe!

199

oNeNe! naQan

a0

Appendix D/ Sample Programs

SUBROUTINE SCRTST
SCREEN TEST

LOGICAL MSG(11)

CALL CLS

ENCODE (MSG,144)

FORMAT (' SCREEN TEST')

CALL SETXY(#,9)

CALL LOCATE(@)

CALL GPRINT(11,MSG)

CALL WAIT

CALL SETXY(3¢0,128)

CALL CIRCLE(19¢,1,0.6,6.28,8.5)
CALL CIRCLE(1¢¢,1,0.8,6.28,8.25)
CALL CIRCLE(5¢,1,8.8,6.28,08.5)
CALL PAINT(1,1)

GRAPHICS SCREEN

CALL SCREEN(#)
CALL WAIT
CALL WAIT
CALL WAIT

TEXT SCREEN

CALL SCREEN(1)
CALL WAIT
CALL WAIT
CALL WAIT

GRAPHICS SCREEN

CALL SCREEN(#)
CALL WAIT
CALL WAIT
CALL WAIT
RETURN

END

115

Model 4 Computer Graphics

gp1eg SUBROUTINE VTEST

gg2pp C ,

gg3gg C VIEW AND FVIEW TEST

ggagg C

gosgg INTEGER FVIEW

goepg LOGICAL MSG(19)

go71890 CALL CLS

ggsgp ENCODE(MSG,1044)

ggogg 199 FORMAT('VIEW AND FVIEW TEST')
g1ogg CALL SETXY(Z,8)

g1199 CALL LOCATE(f)

#1209 CALL GPRINT(19,MSG)

#1399 CALL WAIT

gl4agg C

g1sgg C DRAW VIEWPORT AND CIRCLES
glegg C

#1799 CALL VIEW(@,40,639,239,0,1)
g18gg CALL DCIRCL(1)

gl9gg C

g2ggg C DRAW VIEWPORT AND LINES
g2199 C

#2200 CALL VIEW(2d¢,54,619,229,1,8)
p2309 CALL DLINE(g)

g249¢9 C

g2588 C DRAW VIEWPORT AND CIRCLES
g26gg C

#2799 CALL VIEW(4#,64,599,209,4,8)
g2800 CALL DCIRCL(1)

g29g9g C

g3ggg C DRAW VIEWPORT AND LINES
#3199 C

#3200 CALL VIEW(6d,79,579,199,1,1)
#3399 CALL DLINE(g)

3499 C

@3589 C CLEAR SCREEN

g36gg C

#3709 IX1=FVIEW(g)

#3809 IY1=FVIEW(1l)

g390g IX2=FVIEW(2)

gapog IY2=FVIEW(3)

ga1g9 CALL VIEW(6@-IX1,78-1IY1,60+IX2,40+IY2,6,1)
ga209 CALL CLS

ga3gg RETURN

gaagg END

116

gasgg
ga6gg
947890
g4a8gg
g4a9gg
gsggg
gs5199
#5298

@539
#5499
#5509
#5699
957909
g5800
#5999
gegog
gelgg

19

11

Appendix D/ Sample Programs

SUBROUTINE DCIRCL(ICLR)

CALL SETXY(19¢,180)

DO 18 I=5,309,5

CALL CIRCLE(I,ICLR,@.8,6.28,8.5)
CONTINUE

CALL WAIT

RETURN

END

SUBROUTINE DLINE(ICLR)
DO 11 I=2,200,4

CALL SETXY(-1¢,-18)
CALL SETXY (I+2¢d,I)
CALL LINE(ICLR,-1)
CONTINUE

CALL WAIT

RETURN

END

117

Model 4 Computer Graphics

#9109 SUBROUTINE WAIT

gg2pg C

gg3pg C THIS SUBROUTINE INTRODUCES A TIME DELAY
ggapg C

gasgg DO 11 J=1,2¢

poe6gg DO 1¢ I=1,109008

pR798 19 CONTINUE

gosgg 11 CONTINUE

gg9g9 RETURN

91009 END

118

Appendix E/ Base Conversion Chart

Appendix E/ Base Conversion Chart

DEC. HEX. BINARY DEC. HEX. BINARY
@ o0 pp000000 49 28 0101000
1 01 pooo0ed1 41 29 p0101001
2 2 Poo00010 4z 2A 0101010
3 03 pp000011 43 2B po101011
4 o4 PoQOD100 44 2C poi01100
5 25 poe00101 43 2D po101101
6 06 00000110 46 2E po101110
7 07 poood1il 47 2 pRi101111
8 08 001000 48 30 0110000
9 09 oeooi001 49 31 0110001

10 oA Po0010210 S0 32 po110010
11 oB poeviell 51 33 poi110011
12 ocC Po001100 52 34 Po110100
13 @D poovi1l1ol 53 35 p2110101
14 QE pooo1110 54 36 poi1o110
15 OF poeo1111 59 37 po110111
16 10 pooi0000 56 38 0111000
17 11 poo10001 57 39 2111001
18 12 poo10010 58 3A poi111010
19 13 poo10011 59 3B poi11011
20 14 20010100 60 3C po111100
2 15 poo10101 61 3D 0111101
22 16 00010110 62 3E poi11110
23 17 poo10111 63 3F op111111
24 18 poR11000 64 49 D1000000
23 19 poe11001 B35 41 21000001
26 1A 0011010 66 4z Dipood10
27 1B poo11011 67 43 21000011
28 iC poo11100 68 a4 21000100
29 1D peo11101 69 as piooaiol
30 1E poo11110 70 46 pioeo110
31 iF 00011111 71 47 pioeoiil
32 20 00100000 72 48 01001000
33 21 po100001 73 49 1001001
34 22 Po100010 74 4A pioo1010
35 23 Po100011 73 aB p1oo1011
36 24 po1o0100 76 4c 01001100
37 235 pe100101 77 4D pi0e1101
38 26 P0100110 78 4E 0ioo1110
39 27 pe100111 79 arF p1o01111

119

HEX .

BINARY

(SIS IS WY T T IS I T
NP WM - S

oaoay oo
OCOWITUOoOoNm

o

SE

01010000
pio10001
21010010
01010011
Pi010100
piol1o101
21010110
21010111
21011000
pioi1iool
Pioiio10
21011011
pigii1100
1011101
21011110
pio11111
21100000
21100001
01100010
piiooeltl
01100100
21100101
21100110
21100111
01101000
21101001
piieiolo
piivi1o11
21101100
pliviiel
21101110
21101111
01110000
pilioeol
21110010
1110011
1110100
21110101
01110110
pii1ie111

HEX .

Model 4 Computer Graphics

BINARY

D T T T o e S e e S S =
{9 I % N o T S I S T S O T S T S A SN I S S
=S OOoONO D WUr S

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
139

01111000
21111001
11110102
1111011
01111100
1111101
pii1111e@
1111111
10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
1o001101
1001110
1o001111
10010000
10010001
100i0010
leoio0011
10010100
10010101
10010110
190010111
10011000
10011001
1o0ii1010
1eoiio1l
iooilioo
10011101
10011110
10011111

120

BINARY

10100000
10100001
10100010
10100011
10100100
10100101
100110
10100111
10101000
10101001
1101010
10101011
io101100
111101
iei01110
1e101111
10110000
io110001
10110010
1110011
ip1i0100
1110101
10110110
10110111
10111000
1e111001
10111010
10111011
10111100
10111101

10111110
10111111
11000000
11000001
11000010
1igo0011
11000100
110101
1io00110@
11000111

HEX.

Appendix E/ Base Conversion Chart

BINARY

i1eo1000
11001001
lioelo1i
119021011
1ipo1100
11001101
iioo1110
11001111
1110000
11010001
11010010
11e10011
11010100
1110101
11010110
1ioi1o111
11011000
11911001
1111010
1111011
11011100
11011101
11911110
119011111
11100000
11100001
11io0010
11100011
11100100
1iio00101
11100110
11100111
11101000
11io1001
11101010
11101011
11101100
11101101
11121110
11101111

121

Model 4 Computer Graphics

DEC. HEX. BINARY

240 Fo 11110000
241 F1 11110001
242 2 11110010
243 F3 11110011
244 Fd 11110100
245 F35 11110101
246 FB& 11110110
247 F7 11110111
248 F8 11111000
249 F9 11111001
250 FA 11111010
251 FB 11111011
252 FC 11111100
253 FD 11111101
254 FE 11111110
235 FF 11111111

122

Appendix F/ Pixel Grid Reference

Appendix F/ Pixel Grid Reference

The following hexadecimal numbers include commonly used tiling designs.

Important Note: You cannot use more than two empty rows of tiles when tiling or you’ll get an Illegal Function
Call error.

Example (four rows of empty tiles):

CHR$ (&HFF)+CHR$ (&HFF)+CHR$ (&HO@) +CHR$ (&HOO)+CHR$ (AHOO)+CHR$ (&HOD)
gives you an Illegal Function Call error.

1. “X”

CHR$ (&H41) +CHR$ (RH22) +CHR$ (&H14)+CHR$ (BHOB) +CHR$ (&H14)
+CHR$ (BHZ22) +CHR$ (&H4 1) +CHR$ (&HO D)

Hex Decimal
g 1 g g g gl 1 41 65
g g 1 g g g11 g 0o 34
g g g 1 g 118 g 14 20
g g g g 1 g1 g 08 8
g g g 1 g 118 g 14 20
g g 1 g g g |1 g 22 34
g 1 g g g g | o 1 41 65
g g g g g g1 g 00 0
2. ““Fine” horizontal lines
CHR$ (&HFF) +CHR$ (BHOO)
Hex Decimal
1 1 1 1 1 1 1 1 FF 255
g g g [g g1 g 00 0

123

Model 4 Computer Graphics

3. ““Medium’’ horizontal lines
CHR$ (&HFF)+CHR$ (&HFF)+CHR$% (B.HQQ) +CHR$ (&HOD)

Hex
1 1 1 1 1 111 1 FF
1 1 1 1 1 1 1 1 FF
g g g g g gl g g 00
g g g [g g9 g 00
4. Diagonal lines
(Right to left)
CHR$ (&HD3)+CHR$ (RHOC)+CHR$ (BH3B) +CHR$ (&HCD)
Hex
g g g g g gl1 1 03
g g g g 1 1] 9 g 0C
g g 1 1 g g8 g 30
1 {1 |e | B |2 gloe |9 co
(Left to right)
CHR$ (RHC@)+CHR% (&H3D)+CHR$ (&HOC) +CHR$ (RH23)
Hex
1 1 g g g gl 2o g co
g g 1 1 ¥ g1 48 g 30
g g g g 1 1189 g oC
g g g [/ g gl1 1 03

Decimal

255

255

0

0

Decimal

3

12

48

192

Decimal

192

48

12

3

124

Appendix F/ Pixel Grid Reference

5. “‘Fine’’ vertical lines

CHR$ (B&HAA)
Hex Decimal
1 g 1 g 1 gl1 g AA 170
6. ‘““Medium’’ vertical lines
CHR%$ (&HCC)
Hex Decimal
1 1 g g 1 114 g cC 204
7. ““‘Coarse’’ vertical lines
CHR$ (&HF2)
Hex Decimal
1 1 1 1 ') [} [} ') FO 240
8. One-pixel dots
CHR$(RHZ2Z2)+CHR$ (RHOQ)
Hex Decimal
1 1 22 34
g g '} g '} g 00 0
9. Two-pixel dots
CHR$ (&H99)+CHR$% (BHBB)
Hex Decimal
1 g g 1 1 gl g 1 99 153
[} 1 1 g [} 1 1l ') 66 102

125

Model 4 Computer Graphics

10. Pluses (‘““+")
CHR$ (&H3C)+CHR$ (&H3C)+CHR$ (&HFF)

Hex
g g 1 1 1 119 g 3C
g 1 1 1 1 g 3C
1 1 1 1 1 1 1 1 FF
11. Solid (all pixels ON)
CHR® (&HFF)
Hex
1 1l 1 1 1 1 1 1 FF
12. “‘Broad’’ cross-hatch
CHR$ (&H9Z2)+CHR$ (RHO2)+CHR$ (&HFF)
Hex
1 2 1 1 [} 92
1 g 9 1 '} 1 92
1 1 1 1 1 1 1 1 FF
13. ““Thick’’ cross-hatch
CHR$ (&HFF)+CHR$ (&HFF)+CHR$ (&HDB)+CHR$ (&HDB)
Hex
1 1 1 1 1 1l l 1 FF
1l 1l 1 1 1 1 1 1l FF
1 1 '] 1 1] 1 1 DB
1l 1 ') 1l 1 ') 1 1 DB

Decimal

60

60

255

Decimal

255

Decimal

146

146

255

Decimal

255

255

219

219

126

Appendix F/ Pixel Grid Reference

14. “‘Fine’’ cross-hatch
CHR$ (&H92)+CHR% (&HFF)

Hex Decimal

1 g) 1 9 g1l1 g 92 146

1 1 1 1 1 1 1 1 FF 255
15. Alternating pixels

CHR% (&HSS)+CHR$ (R&HAA)

Hex Decimal

) 1 g 1 g 1149 1 55 85

g 1 g 1 g 11 g AA 170

127

Appendix G/ Line Style Reference

Appendix F/ Line Style Reference

Type Binary Numbers Hex Decimal
Long dash 0000 0000 1111 1111 &HOOFF 255
Short dash 1111 0000 1111 0000 &HFOF0 -3856
“Short-short” dash 1100 1100 1100 1100 &HCCCC -13108
Solid line 1111 1111 1111 1111 &HFFFF -1
OFF/ON 0101 0101 0101 0101 &H5555 21845
“Wide” dots 0000 1000 0000 1000 &H0808 2056
“Medium” dots 1000 1000 1000 1000 &H8888 -30584
“Dot-dash” 1000 1111 1111 1000 &H8FF8 -28680

129

Index

absolute coordinates 40-42,83

AND 34, 35, 80, 87

arc 13, 18

array 19-21, 34, 35, 40, 72-74, 80, 89-90
array limits 20, 73, 74

array name 19, 20, 34, 87, 88

aspect ratio 13, 14, 17, 72

BASIC 5,11, 19, 34-35, 70

BASICG 7,11, 12, 28, 33, 34, 35, 69, 97, 103
BASICG command 11, 13

BASICG error messages 89-93
BASICG functions 12,13

binary numbers 24, 27-29, 129
Cartesian system 8, 12, 40, 82, 83
CIRCLE 11, 13-19, 71, 72, 87, 95
CLR 11, 87

CLS 71, 87, 95

communication drivers 45

current coordinates 69, 70, 72-73, 82
DEBUG 45

DO 73-74, 81, 83

double-precision 12

ellipse 5, 17-19, 71, 87

FORMS 47, 103

FORTRAN 5, 45, 69-71, 75, 104, 105
free memory 11, 28, 70

FVIEW 71, 84, 95

GCLS 45, 48, 87

GET 11, 19-21, 35, 40, 71, 72-73, 95

GLOAD 45, 46, 49, 87-88
GLOCATE 11, 21, 22, 32, 87-88
GPRINT 45,47, 71, 74, 75, 88, 95
GPRT 2 45, 48, 88

GPRT 3 45, 47-48, 88

graphics board 85, 86

GRAPHICS ERROR 70, 75

graphics memory 45-47, 48, 49, 103-104
graphics utilities 45-49

GROFF 45, 48, 88

GRON 45, 49, 88

GRPINI 71,75, 95

GRPLIB/REL 69, 70

GSAVE 45, 49, 88

hard disk 4

hex numbers 23, 24, 28-29, 123, 129
initialization 69-70

integer 13-14, 19, 20, 73

INTEGER 72, 73, 74, 76, 82-83
integer range 8, 15, 23, 24, 75-76, 89

131

/O port mapping 85

LINE 11, 23-25, 69, 71, 88, 95
LINE-CMD 69, 75

line styles 23,24, 129

LINEB 69, 71, 76-77, 95
LINEB-CMB 69

LINEBF 69, 71, 76-77, 95
LINEBF-CMD 69

loading BASICG 11, 12
LOCATE 71, 95
LOGICAL 72-81, 82-84
notational conventions 5
numeric expressions 15, 26
numeric values 13

options programming 86
OR 34, 35, 80-81, 87

PAINT 11, 25-30, 40, 69, 71, 78, 88, 95
PAINT-CMD 69

PAINTT 69, 71, 78-79, 95

PAINTT-CMD 69

pie-slice 13

pixel 7,8, 23-24, 26, 27, 30-34, 35, 71, 73, 79, 80, 84,
85, 123

pixel area 19-20, 35, 38, 39, 72-73, 80-81, 88

POINT 12, 30, 31, 71, 84, 88, 96

PRESET 11, 32, 33, 34, 35, 71, 79, 80-81, 87, 88, 96

previous coordinates 69, 70, 72-73, 82

PRINT #-3 11, 33, 88

printers 5

PSET 11, 33-35, 38, 71, 80, 87, 88, 96

PUT 11, 19-20, 34-36, 38, 39, 71, 80-81, 88

real 20, 73

REAL 72

relative origin 40, 82-83

resolution 7

SCREEN 11, 39, 71, 81, 88, 96

SCREEN-CMD 12, 81

screen dump 47

SETXY 69, 70, 71, 73, 76, 82, 96
SETXYR 69, 70, 71, 75-76, 82, 96
single-precision 12-13, 17-18, 87
starting-up 12

strings 26-28

subrouting library 7,69, 70, 83, 95
text screen 8, 11, 13, 39, 81, 85, 87
video display 8, 85

VIEW 11, 40-42, 71, 82-83, 88, 96
VIEW (command) 11, 40-42

VIEW (function) 12, 43-44, 82, 83, 88
viewport 11, 12, 40-44, 71, 82-83, 84, 88

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTHE, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM u. K.
91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7JN

4/84-TM Printed in U.S.A.

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	bl.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf

